1
|
Abstract
Since the early studies on the resolution and reconstitution of the oxidative phosphorylation system from animal mitochondria, coupling factor B was recognized as an essential component of the machinery responsible for energy-driven ATP synthesis. At the phenomenological level, factor B was agreed to lie at the interface of energy transfer between the respiratory chain and the ATP synthase complex. However, biochemical characterization of the factor B polypeptide has proved difficult. It was not until 1990 that the N-terminal amino acid sequence of bovine mitochondrial factor B was reported, which followed, a decade later, by the report describing the amino acid sequence of full-length human factor B and its functional characterization. The present review summarizes the recent advances in structure-functional studies of factor B, including its recently determined crystal structure at 0.96 A resolution. Ectopic expression of human factor B in cultured animal cells has unexpectedly revealed its role in shaping mitochondrial morphology. The supramolecular assembly of ATP synthase as dimer ribbons at highly curved apices of the mitochondrial cristae was recently suggested to optimize ATP synthesis under proton-limited conditions. We propose that the binding of the ATP synthase dimers with factor B tetramers could be a means to enhance the efficiency of the terminal step of oxidative phosphorylation in animal mitochondria.
Collapse
|
2
|
Griffiths DE. Dibutyltin-3-hydroxyflavone titrates a dissociable component (cofactor) of mitochondrial ATP synthase: An energy-transfer component linked to the ubiquinone pool. Appl Organomet Chem 1994. [DOI: 10.1002/aoc.590080210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Deisinger B, Nawroth T, Zwicker K, Matuschka S, John G, Zimmer G, Freisleben HJ. Purification of ATP synthase from beef heart mitochondria (F0F1) and co-reconstitution with monomeric bacteriorhodopsin into liposomes capable of light-driven ATP synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:377-83. [PMID: 8269926 DOI: 10.1111/j.1432-1033.1993.tb18387.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ATP synthase was isolated from beef heart mitochondria by extraction with N,N-bis-(3-D-gluconamidopropyl)deoxycholamide or by traditional cholate extraction. The enzyme was purified subsequently by ion-exchange and gel-permeation chromatographies in the presence of glycerol and the protease inhibitor diisopropylfluorophosphate. The ATP synthase consisted of 12-14 subunits and contained three tightly bound nucleotides. The co-reconstitution of crude or purified ATP synthase with monomeric bacteriorhodopsin by the method of detergent incubation of liposomes yielded proteoliposomes capable of light-driven ATP synthesis, as detected with a luciferase system for at least 30 min. The reaction was suppressed by the inhibitors oligomycin (> 90%) and dicyclohexylcarbodiimide (85%) and by the uncoupler carbonylcyanide-p-trifluormethoxyphenylhydrazone (> 95%). The purified ATP synthase was apparently free of cytochrome impurities and of adenylate kinase activity, i.e. the enzyme exhibited light-driven ATP synthesis without the dark reaction. For the first time, this is demonstrated with purified ATP synthase from beef heart mitochondria.
Collapse
Affiliation(s)
- B Deisinger
- Gustav-Embden-Zentrum der Biologischen Chemie, Klinikum der J. W. Goethe-Universität, Frankfurt/M., Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Lutter R, Saraste M, van Walraven HS, Runswick MJ, Finel M, Deatherage JF, Walker JE. F1F0-ATP synthase from bovine heart mitochondria: development of the purification of a monodisperse oligomycin-sensitive ATPase. Biochem J 1993; 295 ( Pt 3):799-806. [PMID: 8240295 PMCID: PMC1134632 DOI: 10.1042/bj2950799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new procedure for the isolation of ATP synthase from bovine mitochondria has been developed, with the primary objective of producing enzyme suitable for crystallization trials. Proteins were extracted from mitochondrial membranes with dodecyl-beta-D-maltoside, and the ATP synthase was purified from the extract in the presence of the same detergent by a combination of ion-exchange and gel-filtration chromatography and ammonium sulphate precipitation. This simple and rapid procedure yields 20-30 mg of highly pure and monodisperse enzyme, evidently consisting of 14 different subunits, amongst them, in apparently stoichiometric amounts with the established subunits, subunit e, a recently discovered subunit of unknown function. The enzyme preparation has an oligomycin-sensitive ATP hydrolysis activity, and so the F1 domain is functionally associated with the membrane domain, F0. In contrast with the N-termini of some of the subunits of bovine mitochondrial F1-ATPase, those of the F1F0-ATP synthase are not degraded by proteolysis during the isolation procedure. This preparation therefore satisfies prerequisites for crystallization trials.
Collapse
Affiliation(s)
- R Lutter
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
5
|
Griffiths DE, Usta J, Tian YM. The F1F0-ATPase binding site of dibutyltin-3-hydroxyflavone: Interactions with venturicidin, oligomycin and DCCD. Appl Organomet Chem 1993. [DOI: 10.1002/aoc.590070607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Usta J, Griffiths DE. Dibutyltin-3-hydroxyflavone bromide: A fluorescent inhibitor of F1F0-ATPase. Appl Organomet Chem 1993. [DOI: 10.1002/aoc.590070306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Yoshihara Y, Nagase H, Yamane T, Oka H, Tani I, Higuti T. H(+)-ATP synthase from rat liver mitochondria. A simple, rapid purification method of the functional complex and its characterization. Biochemistry 1991; 30:6854-60. [PMID: 1829963 DOI: 10.1021/bi00242a008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel, simple, and rapid preparative method for purification of rat liver H(+)-ATP synthase by anion-exchange HPLC was developed. The H(+)-ATP synthase purified had higher ATPase activity in the absence of added phospholipids than any preparation reported previously, and this activity was completely inhibited by oligomycin. When reconstituted into proteoliposomes, the H(+)-ATP synthase showed an ATP-dependent 8-anilinonaphthalene-1-sulfonate response and ATP-Pi exchange activity, both of which were also completely inhibited by oligomycin and an uncoupler, indicating the intactness of the H(+)-ATP synthase. An immunochemical study and a labeling experiment with N,N'-[14C]dicyclohexylcarbodiimide ([14C]DCCD) demonstrated the presence of chargerin II ( a product of mitochondrial A6L DNA) and DCCD-binding protein (subunit c) in the complex. The subunits of the complex were separated into 11 main fractions by reverse-phase HPLC, and 3 of them and the delta subunit in F1 were partially sequenced. A search for sequence homologies indicated that these components were subunit b, coupling factor 6, subunit delta, and subunit epsilon. This is the first report of the existence of subunit b, factor 6, and chargerin II in H(+)-ATP synthase purified from rat liver mitochondria.
Collapse
Affiliation(s)
- Y Yoshihara
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Joshi S, Burrows R. ATP synthase complex from bovine heart mitochondria. Subunit arrangement as revealed by nearest neighbor analysis and susceptibility to trypsin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77333-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
ATP synthase complex from bovine heart mitochondria. Passive H+ conduction through F0 does not require oligomycin sensitivity-conferring protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39161-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
|
11
|
Higuti T, Negama T, Takigawa M, Uchida J, Yamane T, Asai T, Tani I, Oeda K, Shimizu M, Nakamura K. A hydrophobic protein, chargerin II, purified from rat liver mitochondria is encoded in the unidentified reading frame A6L of mitochondrial DNA. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68709-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev 1987; 51:477-97. [PMID: 2893973 PMCID: PMC373128 DOI: 10.1128/mr.51.4.477-497.1987] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
|
14
|
Joshi S, Pringle MJ, Siber R. Topology and function of "stalk" proteins in the bovine mitochondrial H+-ATPase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Vázquez-Laslop N, Dreyfus G. Mitochondrial H+-ATPase activation by an amine oxide detergent. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57472-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Dabbeni-Sala F, Palatini P. The role of residual phospholipids and copurified proteins in the reconstitution of bovine heart mitochondrial ATPase complex. Biochem Biophys Res Commun 1985; 133:807-13. [PMID: 2935150 DOI: 10.1016/0006-291x(85)90976-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactivation of mitochondrial ATPase by acidic and isoelectric phospholipids was studied comparatively with two purified enzyme preparations exhibiting different gel electrophoretic patterns: the preparation of Serrano et al. (1976, J. Biol. Chem. 251, 2453-2461) and the complex V of Galante et al. (1979, J. Biol. Chem. 254, 12372-12379). Isoelectric phosphatidylcholine liposomes showed marked differences in affinity for the two ATPase complexes and produced different maximal reactivations, whereas no significant differences were found with negatively charged liposomes. Analysis of residual phospholipids associated with the two ATPase preparations revealed a greater relative cardiolipin content in complex V. It is proposed that the different patterns of reactivation of the two ATPase preparations by isoelectric phospholipids result from different contents in residual cardiolipin and adenine nucleotide carrier.
Collapse
|
17
|
Huang Y, Pringle MJ, Sanadi DR. Diamide blocks H+ conductance in mitochondrial H+-ATPase by oxidizing FB dithiol. FEBS Lett 1985; 192:83-7. [PMID: 2865171 DOI: 10.1016/0014-5793(85)80048-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Effects of diamide on proton conductance of electron transport particles (ETPH), purified H+-ATPase (F1-F0), F0 of the H+-ATPase from beef heart mitochondria and binding of cadmium (109Cd) to the H+-ATPase have been examined in the present paper. When ETPH and purified H+-ATPase are treated with 1 mM diamide, ATP-dependent generation of membrane potential, monitored by the absorbance change produced by the redistribution of oxonol VI, is consistently inhibited. Diamide also blocks passive H+ conductance driven by a K+ diffusion potential in the membrane sector, F0, of H+-ATPase. Furthermore, diamide treatment drastically reduces the binding of 109Cd2+ to H+-ATPase, showing competition for the FB dithiol group.
Collapse
|
18
|
Dreyfus G. Regulation of the Pi-ATP exchange and hydrolytic reactions in F0-F1 reconstituted liposomes. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38993-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Abstract
Two monoclonal antibodies (MAb I and IV) have been prepared which showed high and specific reactions towards bovine heart mitochondrial coupling factor B (FB). Both have been identified as sub-type IgG1 of mouse immunoglobulins. MAb I reacts with purified and functionally active FB, alkylated or oxidized forms of FB and even with peptides formed on digestion of FB with trypsin. When used together, MAb I and IV reacted with FB in immunoblots of normal and urea treated samples of mitochondria, submitochondrial particles, ammonia-EDTA extracted particles, and H+-ATPase. Both MAbs inhibited FB-stimulated ATP-dependent reverse electron flow activity when FB was incubated with the antibody either before or after its addition to FB-deficient AE-particles. Reactivity of MAb I towards FB declined upon exposure of FB to guanidine HC1 while reactivity of MAb IV remained unaltered.
Collapse
|
20
|
Joshi S, Hughes JB, Torok K, Sanadi DR. Resolution and reconstitution of H+ -ATPase complex from beef heart mitochondria. MEMBRANE BIOCHEMISTRY 1985; 5:309-25. [PMID: 2858048 DOI: 10.3109/09687688509150284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
21
|
Griffiths DG, Pringle MJ, Hughes JB, Sanadi DR. Environment of the sulfhydryl groups in bovine heart mitochondrial H+-ATPase. J Bioenerg Biomembr 1984; 16:465-75. [PMID: 6100375 DOI: 10.1007/bf00743239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electron transport particles and purified H+-ATPase (F1-F0) vesicles from beef heart mitochondria have been treated with two classes of thiol reagent, viz. membrane-impermeable organomercurials and a homologous series of N-polymethylene carboxymaleimides (Mal-(CH2)x-COOH or AMx). The effect of such treatment on ATP-driven reactions (ATP-Pi exchange and proton translocation) has been examined and compared to the effects on rates of ATP hydrolysis. The organomercurials inhibited ATP-Pi exchange and one of them (p-chloromercuribenzoate) inhibited ATPase activity. Of the maleimide series (AMx), AM10 and AM11 inhibited both ATP-Pi exchange and ATP-driven membrane potential, but not ATPase activity. The other members of the series were essentially inactive. N-Ethylmaleimide was intermediate in its efficacy. Passive H+ conductance through the membrane sector F0 was 50% blocked by AM10, slightly blocked by AM2 and N-ethylmaleimide, and unaffected by the other members of the AMx series. The data imply that one -SH near the membrane surface and one -SH about 12 A from the surface are functional in proton translocation through the H+-ATPase.
Collapse
|
22
|
Dreyfus G, Célis H, Ramírez J. Isolation of the mitochondrial F1-F0 adenosine triphosphatase by Sepharose-hexylammonium chromatography: properties and reconstitution in liposomes. Anal Biochem 1984; 142:215-20. [PMID: 6083734 DOI: 10.1016/0003-2697(84)90541-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lauryl dimethylamino oxide, a zwitterionic detergent, was employed to solubilize the H+ ATPase from beef heart mitochondria. A simple preparation procedure has been devised to obtain F1-F0 based on a method described to purify F1 ATPase (M. Tuena de Gómez-Puyou and A. Gómez-Puyou, 1977, Arch. Biochem. Biophys. 182, 82-86) which consists of the selective adsorption of F1 to Sepharose-hexylammonium beads. The preparation showed approximately 18 bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 5 correspond to F1 subunits and the rest probably to the stalk and hydrophobic sector F0. The binding of [14C]dicyclohexylcarbodiimide to a low-molecular-weight component of this preparation was demonstrated. The F1-F0 complex was reconstituted into phospholipid vesicles which displayed ATP-Pi exchange and ATP-dependent 9-aminoacridine fluorescence quenching, both sensitive to proton channel inhibitors.
Collapse
|
23
|
Identification of the 29,000-dalton protein and its relevance to oligomycin-sensitive 32Pi-ATP exchange in bovine heart electron transport particles. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90808-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Kantham BC, Hughes JB, Pringle MJ, Sanadi DR. On the functional role of coupling factor B in the mitochondrial H+ -ATPase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)91008-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
McEnery MW, Buhle EL, Aebi U, Pedersen PL. Proton ATPase of rat liver mitochondria. Preparation and visualization of a functional complex using the novel zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43095-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Sanadi DR, Pringle M, Kantham L, Hughes JB, Srivastava A. Evidence for the involvement of coupling factor B in the H+ channel of the mitochondrial H+-ATPase. Proc Natl Acad Sci U S A 1984; 81:1371-4. [PMID: 6143319 PMCID: PMC344835 DOI: 10.1073/pnas.81.5.1371] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane energization by ATP has been measured in vesicles containing purified bovine heart mitochondrial H+-ATPase (ATP synthase) with the voltage-sensitive dye oxonol VI. The dithiol chelator, Cd2+, and the thiol oxidant, copper o-phenanthroline, produced discharge of the membrane potential when added at the steady state and inhibited its establishment when added prior to energization by ATP. These effects, which were reversed by dithiothreitol, were not accompanied by an increase in the nonspecific H+ permeability of the membrane. Passive H+ conduction in proteoliposomes containing F0 (hydrophobic segment of ATP synthase) was assayed by the quenching of 9-aminoacridine fluorescence after establishing a K+ diffusion potential. This conductance was blocked by Cd2+, an inhibitor of coupling factor B (FB). Labeling of F0 with 115Cd2+ at the concentrations that inhibited the F0 conductance followed by gel electrophoresis yielded a single radioactive band with a molecular weight corresponding to FB, the presence of which in the F0 preparation was confirmed by immunoblot staining. The data offer strong evidence that FB is an essential component of the H+ channel of F0, because H+ conduction through the channel is inhibited by chemical modification of FB.
Collapse
|
27
|
Pringle MJ, Sanadi DR. Effects of Cd2+ on ATP-driven membrane potential in beef heart mitochondrial H+-ATPase: a study using the voltage-sensitive probe oxonol VI. MEMBRANE BIOCHEMISTRY 1984; 5:225-41. [PMID: 6235431 DOI: 10.3109/09687688409150280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beef heart mitochondrial H+-ATPase (F1-F0) vesicles were prepared by lysolecithin extraction of ETPH. ATP-driven membrane potential was monitored indirectly by following absorbance changes of the potential-sensitive dye oxonol VI. The steady-state potential was discharged by oligomycin and/or Cd2+ (a dithiol reagent). At 13 degrees C, the agents appeared to act synergistically; at 24 degrees C the data were equivocal. When Cd2+ was added before energization, the membrane potential was markedly attenuated. Both effects of Cd2+ were inhibited by dithiothreitol. The activation energy for oligomycin-sensitive ATPase exhibited a discontinuity at 16 degrees C. However, the temperature dependence of the rate of potential discharge by oligomycin showed no such discontinuity. The results are discussed in terms of the involvement of thiol groups in proton translocation and the thermotropic behavior of the membrane vesicles.
Collapse
|
28
|
Hughes J, Joshi S, Sanadi DR. Coupling factor B involvement in the inhibition of Pi-ATP exchange activity by N-ethylmaleimide. FEBS Lett 1983; 153:441-6. [PMID: 6137415 DOI: 10.1016/0014-5793(83)80660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|