1
|
Kuo DH, De-Miguel FF, Heath-Heckman EAC, Szczupak L, Todd K, Weisblat DA, Winchell CJ. A tale of two leeches: Toward the understanding of the evolution and development of behavioral neural circuits. Evol Dev 2020; 22:471-493. [PMID: 33226195 DOI: 10.1111/ede.12358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, México
| | | | - Lidia Szczupak
- Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, and IFIBYNE UBA-CONICET, Buenos Aires, Argentina
| | - Krista Todd
- Department of Neuroscience, Westminster College, Salt Lake City, Utah, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Christopher J Winchell
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Kuo DH, Lai YT. On the origin of leeches by evolution of development. Dev Growth Differ 2018; 61:43-57. [PMID: 30393850 DOI: 10.1111/dgd.12573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
Leeches are a unique group of annelids arising from an ancestor that would be characterized as a freshwater oligochaete worm. Comparative biology of the oligochaetes and the leeches reveals that body plan changes in the oligochaete-to-leech transition probably occurred by addition or modification of the terminal steps in embryonic development and that they were likely driven by a change in the feeding behavior in the ancestor of leeches. In this review article, developmental changes that are associated with the evolution of several leech-specific traits are discussed. These include (1) the evolution of suckers, (2) the loss of chaetae, (3) the loss of septa, and (4) a fixed number of segments. An altered developmental fate of the teloblast is further proposed to be a key factor contributing to the fixation of the segment number, and the evolutionary change in teloblast development may also account for the loss of the ability to regenerate the lost body segments in the leech.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Te Lai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Kuo DH, Hsiao YH. Duplicated FoxA genes in the leech Helobdella: Insights into the evolution of direct development in clitellate annelids. Dev Dyn 2018; 247:763-778. [PMID: 29396890 DOI: 10.1002/dvdy.24621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As an adaptation to the land, the clitellate annelid had reorganized its embryogenesis to develop "directly" without the ancestral planktonic larval stage. To study the evolution of gut development in the directly developing clitellates, we characterized the expression pattern of the conserved gut gene, FoxA, in the embryonic development of the leech. RESULTS The leech has three FoxA paralogs. Hau-FoxA1 is first expressed in a subset of endoderm cells and then in the foregut and the midgut. Hau-FoxA2 is expressed in the stomodeum, which is secondarily derived from the anterior ectoderm in the clitellates rather than the tissue around the blastopore, the ancestral site of mouth formation in Phylum Annelida. Hau-FoxA3 is expressed during the morphogenesis of segmental ganglia from the ectodermal teloblast lineages, a clitellate-specific trait. Hau-FoxA1 and Hau-FoxA2 are also expressed during the morphogenesis of the leech-specific front sucker. CONCLUSIONS The expression patterns suggested that Hau-FoxA1 carries out most of the conserved function in the endoderm and gut development, while the other two duplicates appear to have evolved unique novel functions in the directly developing clitellate embryos. Therefore, neofunctionalization and co-option of FoxA might have made a significant contribution to the evolution of direct development in Clitellata. Developmental Dynamics 247:763-778, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Hsiao
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Kuo DH. The polychaete-to-clitellate transition: An EvoDevo perspective. Dev Biol 2017; 427:230-240. [DOI: 10.1016/j.ydbio.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
|
5
|
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS One 2014; 9:e96702. [PMID: 24792484 PMCID: PMC4008618 DOI: 10.1371/journal.pone.0096702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a critical function for MAPK signaling for the reorganization of embryonic tissues during the gastrulation process.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christoph Schaub
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katrin Domsch
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Adriaan Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
- * E-mail:
| |
Collapse
|
6
|
Cho SJ, Vallès Y, Weisblat DA. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella. Mol Biol Evol 2013; 31:341-54. [PMID: 24217283 PMCID: PMC3907050 DOI: 10.1093/molbev/mst201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals.
Collapse
Affiliation(s)
- Sung-Jin Cho
- Department of Molecular and Cell Biology, LSA, University of California, Berkeley
| | | | | |
Collapse
|
7
|
Schmerer MW, Null RW, Shankland M. Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated transcription in embryos of the leech Helobdella austinensis. Dev Biol 2013; 382:149-59. [PMID: 23891819 DOI: 10.1016/j.ydbio.2013.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/08/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
The leech embryo develops by spiral cleavage, and establishes the symmetry properties of its adult body plan through the bilaterally symmetric divisions of mesodermal proteloblast DM″ and ectodermal proteloblast DNOPQ‴. We here show that transcriptional inhibitors α-amanitin and actinomycin D specifically disrupt the symmetry and orientation of these two proteloblast cell divisions while having no apparent effect on the timing or geometry of other divisions. Transcriptional inhibition had a similar effect on both proteloblasts, i.e. cytokinesis was highly asymmetric and the cleavage plane roughly orthogonal to that seen during normal development. These findings suggest that zygotic gene product(s) are required, either directly or indirectly, for the correct placement of the proteloblast cleavage furrow. The same phenotypes were also observed following in vivo expression of dominant-negative Pax gene constructs. These dominant-negative phenotypes depended on protein/DNA interaction, and could be rescued by coexpression of full length Pax proteins. However, symmetric cleavage of the mesodermal proteloblast was rescued by full length constructs of either Hau-Paxβ1 or Hau-Pax2/5/8, while only Hau-Paxβ1 rescued the symmetry of ectodermal cleavage. We conclude that both proteloblasts need Pax-mediated transcription to adopt their normally symmetric cleavage patterns, but differ in terms of the specific Pax proteins required. The implication of these findings for the evolution of spiral cleavage is discussed.
Collapse
Affiliation(s)
- Matthew W Schmerer
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
8
|
Farooq M, Choi J, Seoane AI, Lleras RA, Tran HV, Mandal SA, Nelson CL, Soto JG. Identification of 3'UTR sequence elements and a teloplasm localization motif sufficient for the localization of Hro-twist mRNA to the zygotic animal and vegetal poles. Dev Growth Differ 2012; 54:519-34. [PMID: 22587329 DOI: 10.1111/j.1440-169x.2012.01352.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The early localization of mRNA transcripts is critical in sorting cell fate determinants in the developing embryo. In the glossiphoniid leech, Helobdella robusta, maternal mRNAs, such as Hro-twist, localize to the zygotic teloplasm. Ten seven nucleotide repeat elements (AAUAAUA) called ARE2 and a predicted secondary structural motif, called teloplasm localization motif (TLM), are present in the 3'UTR of Hro-twist mRNA. We used site-directed mutagenesis, deletions, and microinjection of labeled, exogenous transcripts to determine if ARE2 elements, and the TLM, play a role in Hro-twist mRNA localization. Deleting the poly-A tail and the cytoplasmic polyadenylation element (CPE) had no effect on Hro-twist mRNA localization. Site-directed mutagenesis of nucleotides that altered ARE2 element sequences or the TLM suggest that the ARE2 elements and the TLM are important for Hro-twist mRNA localization to the teloplasm of pre-cleavage zygotes. Hro-Twist protein expression data suggest that the localization of Hro-twist transcripts in zygotes and stage two embryos is not involved in ensuring mesoderm specification, as Hro-Twist protein is expressed uniformly in most cells before gastrulation. Our data may support a shared molecular mechanism for leech transcripts that localize to the teloplasm.
Collapse
Affiliation(s)
- Mehrin Farooq
- Biological Sciences Department, San Jose State University, San Jose, CA 95192-0100, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Weisblat DA. Asymmetric cell divisions in the early embryo of the leech Helobdella robusta. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:79-95. [PMID: 17585497 DOI: 10.1007/978-3-540-69161-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The small glossiphoniid leech Helobdella robusta is among the best-studied representatives of the super-phylum Lophotrochozoa in terms of early development. The Helobdella embryo undergoes a modified version of spiral cleavage, characterized by stereotyped cell lineages comprising multiple examples of equal and unequal divisions, many of which are well-conserved with respect to those of other clitellate annelids, such as the oligochaete Tubifex. Here, we review the early development of Helobdella, focusing on the variety of unequal cell divisions. We then summarize an experimental analysis of the mechanisms underlying the unequal first cleavage in Helobdella, concluding that the unequal first cleavages in Helobdella and Tubifex proceed by different mechanisms. This result demonstrates the evolvability of the basic cell biological mechanisms underlying well-conserved developmental processes. Finally, we propose a model in which the unequal second cleavage in Helobdella may be regulated by the polarized distribution of PAR protein homologs, convergent with the unequal first cleavage of the nematode Caenorhabditis elegans (super-phylum Ecdysozoa).
Collapse
Affiliation(s)
- David A Weisblat
- University of California, Dept. of Molecular and Cell Biology, 385 LSA, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
11
|
Woodruff JB, Mitchell BJ, Shankland M. Hau-Pax3/7A is an early marker of leech mesoderm involved in segmental morphogenesis, nephridial development, and body cavity formation. Dev Biol 2007; 306:824-37. [PMID: 17433288 DOI: 10.1016/j.ydbio.2007.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/17/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Two genes of the Pax III subfamily, Hau-Pax3/7A and -Pax3/7B, were identified from the leech Helobdella, and the expression and function of Hau-Pax3/7A in development are described. Leech embryos undergo spiral cleavage, then produce a set of teloblastic stem cells that generate segmented mesoderm and ectoderm. Hau-Pax3/7A is present as a maternal transcript in both ectodermal and mesodermal progenitors, but this pool of early RNA disappears and is replaced by a pattern of zygotic transcription restricted to the blast cell progeny of the mesodermal M teloblasts. Each mesodermal blast cell clone goes through multiple phases of Hau-Pax3/7A expression, the last of which is associated with the organogenesis of the nephridia and other segment-specific structures. Morpholino-mediated knockdown of Hau-Pax3/7A expression causes the mesodermal blast cell clones to undergo irregular patterns of morphogenesis that disrupt the segmental organization of the germinal plate, and interferes with both the specification and morphological differentiation of the mesodermal nephridia. Knockdown of Hau-Pax3/7A in the mesoderm can also lead to abnormalities in the formation of the dorsal cavities, possibly through indirect effects of this germ layer on neighboring tissues. This is the first report of broad mesodermal Pax III expression outside of chordates, and raises the possibility that such expression may be a primitive trait inherited from the last common ancestor of the bilaterian superphyla.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Section of Molecular Cell and Developmental Biology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
12
|
Agee SJ, Lyons DC, Weisblat DA. Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Dev Biol 2006; 298:1-11. [PMID: 16930584 DOI: 10.1016/j.ydbio.2006.04.473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 11/16/2022]
Abstract
The gene nanos (nos) is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nos-related genes is associated with the germ line in a broad variety of other taxa, including the leech Helobdella robusta, where zygotically expressed Hro-nos appears to be associated with primordial germ cells. The function of maternally inherited Hro-nos transcripts remains to be determined, however. Here, the function of maternal Hro-nos is examined using an antisense morpholino (MO) knockdown strategy, as confirmed by immunostaining and western blot analysis. HRO-NOS knockdown embryos exhibit abnormalities in the distribution of micromeres during cleavage. Subsequently, their germinal bands are positioned abnormally with respect to the embryonic midline and the micromere cap, epiboly fails, and the HRO-NOS knockdown embryos die. This lethality can be rescued by injection of mRNA encoding an eGFP::HRO-NOS fusion protein. HRO-NOS knockdown embryos make their normal complements of mesodermal and ectodermal teloblasts, and the progeny of these teloblasts segregate into distinct mesodermal and ectodermal layers. These results suggest that maternal Hro-nos is required for embryonic development. However, contrary to previous suggestions, maternal inherited Hro-nos does not appear necessary for ectoderm specification.
Collapse
Affiliation(s)
- Sara J Agee
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
13
|
Ren X, Weisblat DA. Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta. Dev Biol 2006; 292:103-15. [PMID: 16458880 DOI: 10.1016/j.ydbio.2005.12.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 11/15/2005] [Accepted: 12/21/2005] [Indexed: 01/10/2023]
Abstract
Unequal first cleavage is characteristic of a diverse group of protostome animals. In the nematode Caenorhabditis elegans, unequal first cleavage is achieved through the interaction of an apparently symmetric mitotic spindle apparatus with a clearly polarized cell cortex. In the clitellate annelid Tubifex tubifex, by contrast, the spindle is monastral and contains only one gamma-tubulin-reactive centrosome; this monastral spindle is inherently asymmetric throughout mitosis. Here, we have used immunostaining for beta- and gamma-tubulin to follow spindle dynamics during the unequal first cleavage in another clitellate annelid, the leech Helobdella robusta. We find that the mitotic spindle is diastral and symmetric through early metaphase, then becomes asymmetric following the transient down-regulation of one centrosome, as judged by gamma-tubulin immunofluorescence. Low levels of drugs that affect microtubule dynamics can symmetrize the first cleavage without affecting the gamma-tubulin dynamics. Our results provide a striking example of the evolvability of cellular mechanisms underlying an unambiguously homologous developmental process.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Molecular and Cell Biology, 385 LSA, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
14
|
Kang D, Pilon M, Weisblat DA. Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm. Dev Biol 2002; 245:28-41. [PMID: 11969253 DOI: 10.1006/dbio.2002.0615] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nanos-class gene of the leech Helobdella robusta (Hro-nos) is present as a maternal transcript whose levels decay during cleavage; HRO-NOS protein is more abundant in the D quadrant cells relative to the A, B, and C quadrants; and HRO-NOS is more abundant in the ectodermal precursor cell (DNOPQ) than in its sister mesodermal precursor (DM) (Pilon and Weisblat, 1997). Here, using in situ hybridization, we show that Hro-nos mRNA is broadly distributed throughout the zygote, is concentrated in both animal and vegetal teloplasm during stage 1 and is at higher levels in DNOPQ than in DM at stage 4b. Hro-nos expression increases after stage 7, as judged by in situ hybridization, developmental RT-PCR, and western blots; this increase must therefore represent later zygotic expression. Of particular interest, during stages 9 and 10, each of 11 mid-body segments (M8-M18) has a pair of Hro-nos positive "spots" comprising of one or two large cells each. These spots later disappear in an anteroposterior progression. We find that these Hro-nos-expressing cells are of mesodermal origin, arising in a segmentally iterated manner from the M lineage, and correspond to cells previously proposed as primordial germ cells (PGCs; Bürger, 1891; Weisblat and Shankland, 1985). These results support the proposal that nanos-class genes functioned in the specification of germline cells in the ancestral bilaterian and possibly in a separate process related to embryonic polarity in the ancestral protostome.
Collapse
Affiliation(s)
- Dongmin Kang
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
15
|
Abstract
Dramatic advances in understanding the development of selected "model" organisms, coupled with the realization that genes which regulate development are often conserved between diverse taxa, have renewed interest in comparative development and evolution. Recent molecular phylogenies seem to be converging on a new consensus "tree," according to which higher bilaterians fall into three major groups, Deuterostoma, Ecdysozoa, and Lophotrochozoa. Commonly studied model systems for development fall almost exclusively within the first two of these groups. Glossiphoniid leeches (phylum Annelida) offer certain advantages for descriptive and experimental embryology per se, and can also serve to represent the lophotrochozoan clade. We present an overview of the development of glossiphoniid leeches, highlighting some current research questions and the potential for comparative cellular and molecular studies.
Collapse
|
16
|
Abstract
In the development of leeches such as Helobdella robusta, mesodermal and ectodermal fates segregate to cells DM and DNOPQ, respectively, at fourth cleavage. As one step in identifying genes that may act in mesoderm determination, we have cloned the H. robusta homolog to the Drosophila gene twist. This homolog, designated Hro-twi, exhibits high (> 90%) amino acid identity with other twist-class genes within its basic-helix loop-helix (b-HLH) DNA binding motif and dimerization domain. Like twist, Hro-twi contains CAX-rich stretches: three stretches 5' to the b-HLH and one located 3' of the b-HLH motif. RT-PCR analysis suggests that Hro-twi is present throughout development, beginning as a maternal transcript in the oocyte.
Collapse
Affiliation(s)
- J G Soto
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | | | |
Collapse
|
17
|
Abstract
During embryogenesis, cell division must be spatially and temporally regulated with respect to other developmental processes. Leech embryos undergo a series of unequal and asynchronous cleavages to produce individually recognizable cells whose lineages, developmental fates and cell cycle properties have been characterized. Thus, leech embryos provide an opportunity to examine the regulation of cell division at the level of individual well-characterized cells within a community of different types of cells. Isolation of leech homologues of some of the highly conserved regulators of the cell division cycle, and characterization of their patterns of maternal and zygotic expression, indicate that the cell divisions of early leech embryos are regulated by cell type-specific mechanisms. These studies with leech embryos contribute to the emerging appreciation of the diverse mechanisms by which animals regulate cell division during early development.
Collapse
Affiliation(s)
- S T Bissen
- Department of Biology, University of Missouri-St Louis 63121-4499, USA.
| |
Collapse
|