Dörr R, Huss VA. Characterization of nuclear DNA in 12 species of Chlorella (Chlorococcales, Chlorophyta) by DNA reassociation.
Biosystems 1990;
24:145-55. [PMID:
2249008 DOI:
10.1016/0303-2647(90)90007-n]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strains of 12 different species of the genus Chlorella were analyzed for amount, reiteration frequency and kinetic complexity of chromosomal DNA components by C0t analysis. The resulting C0t curves reveal at least two different DNA components consisting of single copy DNA (up to 95%) and of repetitive DNA with complexities of 4.1 x 10(3) base pairs (bp) to approximately 11.7 x 10(3) bp and a reiteration frequency of 100-760. The total amount of repetitive DNA is less than 9% of the nuclear genome and similar in all strains studied. In contrast, the total kinetic complexity varies in a wide range from 1.26 x 10(7) bp to 8.08 x 10(7) bp which is mainly due to differences in the size of single copy DNA. The genome sizes in Chlorella seem not to be correlated with biochemical and physiological characteristics and therefore are unlikely to be useful as a taxonomical marker. A comparison of thermal denaturation profiles showed that the melting points of repetitive and single copy DNA differ by approximately 7 degrees C which may result from base mismatch and/or from a distinct base composition of the repetitive DNA.
Collapse