1
|
Rokitskaya TI, Alekseev AA, Tsybrov FM, Bukhalovich SM, Antonenko YN, Gordeliy VI. Retinal-Based Anion Pump from the Cyanobacterium Tolypothrix campylonemoides. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1571-1579. [PMID: 38105025 DOI: 10.1134/s0006297923100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
In this work, TcaR rhodopsin from the cyanobacterium Tolypothrix campylonemoides was characterized. Analysis of the amino acid sequence of TcaR revealed that this protein possesses a TSD motif that differs by only one amino acid from the TSA motif of the known halorhodopsin chloride pump. The TcaR protein was expressed in E. coli, purified, and incorporated into proteoliposomes and nanodiscs. Functional activity was measured by electric current generation through the planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one side of the membrane surface, as well as by fluorescence using the voltage-dependent dye oxonol VI. We have shown that TcaR rhodopsin functions as a powerful anion pump. Our results show that the novel microbial anion transporter, TcaR, deserves deeper investigation and may be of interest both for fundamental studies of membrane proteins and as a tool for optogenetics.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Aleksey A Alekseev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Fedor M Tsybrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Sergej M Bukhalovich
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
2
|
Singh M, Ito S, Hososhima S, Abe-Yoshizumi R, Tsunoda SP, Inoue K, Kandori H. Light-Driven Chloride and Sulfate Pump with Two Different Transport Modes. J Phys Chem B 2023; 127:7123-7134. [PMID: 37552856 DOI: 10.1021/acs.jpcb.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ion pumps are membrane proteins that actively translocate ions by using energy. All known pumps bind ions in the resting state, and external energy allows ion transport through protein structural changes. The light-driven sodium-ion pump Krokinobacter eikastus rhodopsin 2 (KR2) is an exceptional case in which ion binding follows the energy input. In this study, we report another case of this unusual transport mode. The NTQ rhodopsin from Alteribacter aurantiacus (AaClR) is a natural light-driven chloride pump, in which the chloride ion binds to the resting state. AaClR is also able to pump sulfate ions, though the pump efficiency is much lower for sulfate ions than for chloride ions. Detailed spectroscopic analysis revealed no binding of the sulfate ion to the resting state of AaClR, indicating that binding of the substrate (sulfate ion) to the resting state is not necessary for active transport. This property of the AaClR sulfate pump is similar to that of the KR2 sodium pump. Photocycle dynamics of the AaClR sulfate pump resemble a non-functional cycle in the absence of anions. Despite this, flash photolysis and difference Fourier transform infrared spectroscopy suggest transient binding of the sulfate ion to AaClR. The molecular mechanism of this unusual active transport by AaClR is discussed.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| |
Collapse
|
3
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
4
|
Weissbecker J, Boumrifak C, Breyer M, Wießalla T, Shevchenko V, Mager T, Slavov C, Alekseev A, Kovalev K, Gordeliy V, Bamberg E, Wachtveitl J. Die spannungsabhängige Richtung der Reprotonierung der Schiff'schen Base bestimmt das Einwärtspumpen von Xenorhodopsin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juliane Weissbecker
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Chokri Boumrifak
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| | - Maximilian Breyer
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Tristan Wießalla
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Vitaly Shevchenko
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Thomas Mager
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Chavdar Slavov
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Kirill Kovalev
- European Molecular Biology Laboratory Notkestraße 85 22607 Hamburg Deutschland
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases Moscow Institute of Physics and Technology Dolgoprudny Russland
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Ernst Bamberg
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Josef Wachtveitl
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| |
Collapse
|
5
|
Wachtveitl J, Weissbecker J, Boumrifak C, Breyer M, Wießalla T, Shevchenko V, Mager T, Slavov C, Alekseev A, Kovalev K, Gordeliy V, Bamberg E. The voltage dependent sidedness of the reprotonation of the retinal Schiff base determines the unique inward pumping of Xenorhodopsin. Angew Chem Int Ed Engl 2021; 60:23010-23017. [PMID: 34339559 PMCID: PMC8518763 DOI: 10.1002/anie.202103882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/07/2022]
Abstract
The new class of microbial rhodopsins, called xenorhodopsins (XeRs) (1), extends the versatility of this family by inward H + pumps (2-4). These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina ( Ns XeR) (1). The photodynamic behavior of Ns XeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of Ns XeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H + acceptor D220.
Collapse
Affiliation(s)
- Josef Wachtveitl
- Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY
| | | | - Chokri Boumrifak
- Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry and Pharmacy, GERMANY
| | | | - Tristan Wießalla
- Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| | - Vitaly Shevchenko
- Forschungszentrum Julich ICG: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Thomas Mager
- Max Planck Institute of Biophysics: Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| | - Chavdar Slavov
- Goethe-Universitat Frankfurt am Main, Chemistry, GERMANY
| | - Alexey Alekseev
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Kirill Kovalev
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Valentin Gordeliy
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Ernst Bamberg
- Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| |
Collapse
|
6
|
Nishimura N, Mizuno M, Kandori H, Mizutani Y. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. J Phys Chem B 2019; 123:3430-3440. [DOI: 10.1021/acs.jpcb.9b00928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nao Nishimura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Terpugov EL, Degtyareva OV, Fesenko EE. Microwave-Induced Structural Changes in Bacteriorhodopsin: Studies by Optical and Fourier Transform Infrared Difference Spectroscopy. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
10
|
Lee HW, Kim DW, Lee MH, Kim BY, Cho YJ, Yim KJ, Song HS, Rhee JK, Seo MJ, Choi HJ, Choi JS, Lee DG, Yoon C, Nam YD, Roh SW. Draft genome sequence of the extremely halophilic archaeon Haladaptatus cibarius type strain D43(T) isolated from fermented seafood. Stand Genomic Sci 2015; 10:53. [PMID: 26380039 PMCID: PMC4571117 DOI: 10.1186/s40793-015-0051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/27/2015] [Indexed: 11/21/2022] Open
Abstract
An extremely halophilic archaeon, Haladaptatus cibarius D43T, was isolated from traditional Korean salt-rich fermented seafood. Strain D43T shows the highest 16S rRNA gene sequence similarity (98.7 %) with Haladaptatus litoreus RO1-28T, is Gram-negative staining, motile, and extremely halophilic. Despite potential industrial applications of extremely halophilic archaea, their genome characteristics remain obscure. Here, we describe the whole genome sequence and annotated features of strain D43T. The 3,926,724 bp genome includes 4,092 protein-coding and 57 RNA genes (including 6 rRNA and 49 tRNA genes) with an average G + C content of 57.76 %.
Collapse
Affiliation(s)
- Hae-Won Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea.,World Institute of Kimchi, Gwangju, 503-360 Republic of Korea
| | - Dae-Won Kim
- Systems Biology Team, Center for Immunity and Pathology, Korea National Institute of Health, Cheongju, 361-951 Republic of Korea
| | - Mi-Hwa Lee
- Research Group of Gut Microbiome, Korea Food Research Institute, Sungnam, 463-746 Republic of Korea
| | - Byung-Yong Kim
- ChunLab Inc., Seoul National University, Seoul, 151-742 Republic of Korea
| | - Yong-Joon Cho
- ChunLab Inc., Seoul National University, Seoul, 151-742 Republic of Korea
| | - Kyung June Yim
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| | - Hye Seon Song
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 120-750 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 406-772 Republic of Korea
| | - Hak-Jong Choi
- World Institute of Kimchi, Gwangju, 503-360 Republic of Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| | - Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| | - Changmann Yoon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Sungnam, 463-746 Republic of Korea
| | - Seong Woon Roh
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806 Republic of Korea
| |
Collapse
|
11
|
|
12
|
|
13
|
Schulten K, Humphrey W, Logunov I, Sheves M, Xu D. Molecular Dynamics Studies of Bacteriorhodopsin's Photocycles. Isr J Chem 2013. [DOI: 10.1002/ijch.199500042] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Honig B, Ottolenghi M, Sheves M. Acid-Base Equilibria and the Proton Pump in Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
|
16
|
|
17
|
Wang T, Facciotti MT, Duan Y. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin. PLoS One 2013; 8:e69882. [PMID: 23922839 PMCID: PMC3726731 DOI: 10.1371/journal.pone.0069882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal’s C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.
Collapse
Affiliation(s)
- Ting Wang
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Marc T. Facciotti
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| | - Yong Duan
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| |
Collapse
|
18
|
Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, Zhou M, Zhao JQ, Scheer H, Zhao KH. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. FEBS J 2011; 279:40-54. [PMID: 22008418 DOI: 10.1111/j.1742-4658.2011.08397.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max) = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.
Collapse
Affiliation(s)
- Yu Chen
- College of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sasaki J, Tsai AL, Spudich JL. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J Biol Chem 2011; 286:18868-77. [PMID: 21454480 DOI: 10.1074/jbc.m110.200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Ulrich AS. 2H NMR studies of oriented bacteriorhodopsin membranes to determine single bond orientations. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19961010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Tittor J, Oesterhelt D, Bamberg E. Bacteriorhodopsin mutants D85N, D85T and D85,96N as proton pumps. Biophys Chem 2007; 56:153-7. [PMID: 17023320 DOI: 10.1016/0301-4622(95)00027-u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton translocation in the BR mutants D85N, D85T and D85,96N was studied by attachment of purple membranes to planar lipid bilayers. Pump currents in these mutants were measured via capacitive coupling and by use of the appropriate ionophores. All mutants have a reduced pK of their Schiff bases around 8-8.5 in common. At physiological pH, a mixture of chromophores absorbing at 410 nm (deprotonated form) and around 600 nm (protonated form) coexists. Excitation with continuous blue light induces in all three mutants an outwardly directed stationary pump current. These currents are enhanced upon addition of azide in D85N and D85,96N by a factor of 50, but no azide enhancement is observed in D85T. Yellow light alone induces transient inwardly directed currents in the mutants but additional blue light leads to a stationary current with the same direction. All the observed currents are carried by protons, so that the consecutive absorption of a yellow and a blue photon leads to inverted stationary photocurrents by the mutants, as observed with halorhodopsin (HR). A mechanistic model describing the inversion of proton pumping is discussed by the cis-trans, trans-cis isomerization of the retinal and the different proton accessibility of the Schiff base from the extracellular or the cytoplasmic side of the membrane.
Collapse
Affiliation(s)
- J Tittor
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
22
|
Wolperdinger M, Hampp N. Bacteriorhodopsin variants as versatile media in optical processing. Biophys Chem 2007; 56:189-92. [PMID: 17023323 DOI: 10.1016/0301-4622(95)00032-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The photochromic properties of bacteriorhodopsin (BR), in addition to its longevity and excellent reversibility, are attractive features for the construction of light-sensitive media for optical information processing. However, the various optical techniques require media with specifically adapted and widely differing properties. Genetic engineering of BR and biotechnological production of mutated BRs is the key for the utilization of this photochromic compound in optical applications. Mutated BRs, generated by single and double amino acid exchanges, have been used as recording media for optical applications such as phase conjugation or long-term data storage at room temperature.
Collapse
Affiliation(s)
- M Wolperdinger
- Institute for Physical Chemistry, Ludwig-Maximilians-Universität München, Sophienstr. 11, D-80333 Muenchen, Germany
| | | |
Collapse
|
23
|
Bálint Z, Végh GA, Popescu A, Dima M, Ganea C, Varó G. Direct observation of protein motion during the photochemical reaction cycle of bacteriorhodopsin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7225-8. [PMID: 17503866 DOI: 10.1021/la700666p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Platinum-coated, conductive atomic force microscope cantilevers were used to deposit electrophoretically purple membranes from Halobacterium salinarum on the bottom part of the cantilevers. By illuminating the bacteriorhodopsin-containing purple membranes, the protein goes through its photochemical reaction cycle, during which a conformational change happens in the protein, changing its shape and size. The size change of the protein acts upon the cantilever by causing its deflection, which can be monitored by the detection system of the atomic force microscope. The shape of the signal, the action spectrum of the deflection amplitude, and the blue light inhibition of the deflection all prove that the origin of the signal is the conformational change arising in the bacteriorhodopsin during the photocycle. From the size of the signal, the magnitude of the protein motion could be estimated. Using polarized light, the orientation of the motion was determined, relative to the transition moment of the retinal.
Collapse
Affiliation(s)
- Zoltán Bálint
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary H-6726
| | | | | | | | | | | |
Collapse
|
24
|
Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: A theoretical analysis of structural elements. J Struct Biol 2007; 157:454-69. [PMID: 17189704 DOI: 10.1016/j.jsb.2006.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/26/2006] [Accepted: 10/03/2006] [Indexed: 11/15/2022]
Abstract
The transfer of a proton from the retinal Schiff base to the nearby Asp85 protein group is an essential step in the directional proton-pumping by bacteriorhodopsin. To avoid the wasteful back reprotonation of the Schiff base from Asp85, the protein must ensure that, following Schiff base deprotonation, the energy barrier for back proton-transfer from Asp85 to the Schiff base is larger than that for proton-transfer from the Schiff base to Asp85. Here, three structural elements that may contribute to suppressing the back proton-transfer from Asp85 to the Schiff base are investigated: (i) retinal twisting; (ii) hydrogen-bonding distances in the active site; and (iii) the number and location of internal water molecules. The impact of the pattern of bond twisting on the retinal deprotonation energy is dissected by performing an extensive set of quantum-mechanical calculations. Structural rearrangements in the active site, such as changes of the Thr89:Asp85 distance and relocation of water molecules hydrogen-bonding to the Asp85 acceptor group, may participate in the mechanism which ensures that following the transfer of the Schiff base proton to Asp85 the protein proceeds with the subsequent photocycle steps, and not with back proton transfer from Asp85 to the Schiff base.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
25
|
Magyari K, Bálint Z, Simon V, Váró G. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2006; 85:140-4. [PMID: 16904334 DOI: 10.1016/j.jphotobiol.2006.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/08/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
The function of three types of bacteriorhodopsins was compared: the wild-type, the bleached and retinal reconstituted and retinal deficient bacteriorhodopsin after retinal addition. The apparent pK(a) of the proton acceptor group for the bleached BR and retinal deficient BR shifted toward higher pH values compared to the wild-type BR. Fitting the photocycle model to the absorption kinetic signals for all three proteins showed the existence of the same intermediates, but the time-dependent concentration of the intermediates was different. Although measurements were made at pH 7, the absorption kinetics and photoelectric signals in both retinal reconstituted samples acted as wild-type bacteriorhodopsin at significantly higher pH. Below pH 3 the retinal deficient and reconstituted sample bleached. These results suggested that the added retinal was not able to rebind in the same position in the protein as in native bacteriorhodopsin. This points out that care should be taken, when bleached bacteriorhodopsin is reconstituted with different retinal analogs.
Collapse
Affiliation(s)
- Klára Magyari
- Department of Physics, University "Babes-Bolyai" Cluj-Napoca, Romania
| | | | | | | |
Collapse
|
26
|
Szakács J, Lakatos M, Ganea C, Váró G. Kinetic isotope effects in the photochemical reaction cycle of ion transporting retinal proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 79:145-50. [PMID: 15878119 DOI: 10.1016/j.jphotobiol.2005.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 11/28/2022]
Abstract
The kinetics of the photochemical reaction cycle of the bacteriorhodopsin, pharaonis halorhodopsin and proteorhodopsin were determined in H2O and D2O at low and high pH, to get insight in the proton dependent steps of the transport process. While all the steps of the bacteriorhodopsin photocycle at normal pH exhibited a strong isotope effect, the proton uptake step of the photocycle, measured at high pH, became independent of deuterium exchange, making plausible that this step, at low proton concentration, becomes concentration dependent, not mobility dependent. The proton transporting photocycle of the proteorhodopsin at its normal pH (9.5) shows a marked deuterium effect, while at high pH (12.2) this effect almost totally disappears. It was shown earlier that the proton uptake step of the proteorhodopsin is at the rise of the N form. As the proton concentration decreases with rising pH this step becomes the rate limiting, proton concentration dependent step, hiding all the other isotope dependent components. In the case of halorhodopsin in all the chloride, nitrate and proton transporting conditions the photocycle was not strongly affected by the deuterium exchange. While in the cases of the first two ions this seems normal, the absence of the deuterium effect in the case of the proton transporting photocycle was a puzzle. The only plausible explanation is that in the presence of azide the halorhodopsin transports not the proton, but a negatively charged ion the OH-, the mass and mobility of which is only slightly influenced by the deuterium exchange.
Collapse
Affiliation(s)
- Júliánna Szakács
- Department of Biophysics, University of Medicine and Pharmacy, Tg. Mures, Romania
| | | | | | | |
Collapse
|
27
|
Edman K, Royant A, Larsson G, Jacobson F, Taylor T, van der Spoel D, Landau EM, Pebay-Peyroula E, Neutze R. Deformation of Helix C in the Low Temperature L-intermediate of Bacteriorhodopsin. J Biol Chem 2004; 279:2147-58. [PMID: 14532280 DOI: 10.1074/jbc.m300709200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.
Collapse
Affiliation(s)
- Karl Edman
- Department of Chemistry and Bioscience, Chalmers University of Technology, Box 462, S-40530 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ueno S, Shibata A, Yorimitsu A, Baba Y, Kamo N. Redox potentials of the oriented film of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:109-14. [PMID: 12507765 DOI: 10.1016/s0005-2736(02)00660-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.
Collapse
Affiliation(s)
- Satoru Ueno
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | | | | | | | | |
Collapse
|
29
|
Losi A, Braslavsky SE. The time-resolved thermodynamics of the chromophore–protein interactions in biological photosensors as derived from photothermal measurements. Phys Chem Chem Phys 2003. [DOI: 10.1039/b303848c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Hiraki K, Hamanaka T, Zheng XG, Shinada T, Kim JM, Yoshihara K, Kito Y. Bacteriorhodopsin analog regenerated with 13-desmethyl-13-iodoretinal. Biophys J 2002; 83:3460-9. [PMID: 12496112 PMCID: PMC1302420 DOI: 10.1016/s0006-3495(02)75345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The retinal analog 13-desmethyl-13-iodoretinal (13-iodoretinal) was newly synthesized and incorporated into apomembranes to reconstitute bacteriorhodopsin analog 13-I-bR. The absorption maximum was 598 nm and 97% of the chromophore was an all-trans isomer in the dark- and light-adapted state. Upon flash illumination, 13-I-bR underwent a transient spectral change in which a shorter wavelength intermediate (lambda(max) = 426 nm) similar to the M species of the native bR developed. Also, 13-I-bR showed light-induced proton pumping with rates and extents comparable to those seen in the native bR. The ultraviolet circular dichroism (CD) spectrum originating from the aromatic groups was different from that of the native bR, indicating that the substituted bulky iodine atom strongly interacts with neighboring amino acids. A projection difference Fourier map showed the labeled iodine was in the vicinity of helix C. 13-I-bR is an advantageous specimen for kinetic investigations of light-induced structural changes associated with the proton pumping cycle by x-ray diffraction.
Collapse
Affiliation(s)
- Kenji Hiraki
- Suntory Institute for Bioorganic Research, Wakayamadai, Shimamoto, Osaka 618-0024, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:144-67. [PMID: 12409192 DOI: 10.1016/s0005-2736(02)00566-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Nachliel E, Gutman M, Tittor J, Oesterhelt D. Proton transfer dynamics on the surface of the late M state of bacteriorhodopsin. Biophys J 2002; 83:416-26. [PMID: 12080130 PMCID: PMC1302157 DOI: 10.1016/s0006-3495(02)75179-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cytoplasmic surface of the BR (initial) state of bacteriorhodopsin is characterized by a cluster of three carboxylates that function as a proton-collecting antenna. Systematic replacement of most of the surface carboxylates indicated that the cluster is made of D104, E161, and E234 (Checover, S., Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt, and N. Dencher. 2001. Biochemistry. 40:4281-4292), yet the BR state is a resting configuration; thus, its proton-collecting antenna can only indicate the presence of its role in the photo-intermediates where the protein is re-protonated by protons coming from the cytoplasmic matrix. In the present study we used the D96N and the triple (D96G/F171C/F219L) mutant for monitoring the proton-collecting properties of the protein in its late M state. The protein was maintained in a steady M state by continuous illumination and subjected to reversible pulse protonation caused by repeated excitation of pyranine present in the reaction mixture. The re-protonation dynamics of the pyranine anion was subjected to kinetic analysis, and the rate constants of the reaction of free protons with the surface groups and the proton exchange reactions between them were calculated. The reconstruction of the experimental signal indicated that the late M state of bacteriorhodopsin exhibits an efficient mechanism of proton delivery to the unoccupied-most basic-residue on its cytoplasmic surface (D38), which exceeds that of the BR configuration of the protein. The kinetic analysis was carried out in conjunction with the published structure of the M state (Sass, H., G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, and P. Ormos. 2000. Nature. 406:649-653), the model that resolves most of the cytoplasmic surface. The combination of the kinetic analysis and the structural information led to identification of two proton-conducting tracks on the protein's surface that are funneling protons to D38. One track is made of the carboxylate moieties of residues D36 and E237, while the other is made of D102 and E232. In the late M state the carboxylates of both tracks are closer to D38 than in the BR (initial) state, accounting for a more efficient proton equilibration between the bulk and the protein's proton entrance channel. The triple mutant resembles in the kinetic properties of its proton conducting surface more the BR-M state than the initial state confirming structural similarities with the BR-M state and differences to the BR initial state.
Collapse
Affiliation(s)
- Esther Nachliel
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
33
|
Lakatos M, Groma GI, Ganea C, Lanyi JK, Váró G. Characterization of the azide-dependent bacteriorhodopsin-like photocycle of salinarum halorhodopsin. Biophys J 2002; 82:1687-95. [PMID: 11916830 PMCID: PMC1301968 DOI: 10.1016/s0006-3495(02)75521-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The photocycle of salinarum halorhodopsin was investigated in the presence of azide. The azide binds to the halorhodopsin with 150 mM binding constant in the absence of chloride and with 250 mM binding constant in the presence of 1 M chloride. We demonstrate that the azide-binding site is different from that of chloride, and the influence of chloride on the binding constant is indirect. The analysis of the absorption kinetic signals indicates the existence of two parallel photocycles. One belongs to the 13-cis retinal containing protein and contains a single red shifted intermediate. The other photocycle, of the all-trans retinal containing halorhodopsin, resembles the cycle of bacteriorhodopsin and contains a long-living M intermediate. With time-resolved spectroscopy, the spectra of intermediates were determined. Intermediates L, N, and O were not detected. The multiexponential rise and decay of the M intermediate could be explained by the introduction of the "spectrally silent" intermediates M1, M2, and HR', HR, respectively. The electric signal measurements revealed the existence of a component equivalent with a proton motion toward the extracellular side of the membrane, which appears during the M1 to M2 transition. The differences between the azide-dependent photocycle of salinarum halorhodopsin and pharaonis halorhodopsin are discussed.
Collapse
Affiliation(s)
- Melinda Lakatos
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | | | | | | | | |
Collapse
|
34
|
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics simulations of bacteriorhodopsin (bR) in the membrane matrix have been carried out to determine the factors that make significant contributions to the opsin shift. We found that both solvation and interactions with the protein significantly shifts the absorption maximum of the retinal protonated Schiff base, but the effects are much more pronounced in polar solvents such as methanol, acetonitrile, and water than in the protein environment. The differential solvatochromic shifts of PSB in methanol and in bR leads to a bathochromic shift of about 1800 cm(-1). Because the combined QM/MM configuration interaction calculation is essentially a point charge model, this contribution is attributed to the extended point-charge model of Honig and Nakanishi. The incorporation of retinal in bR is accompanied by a change in retinal conformation from the 6-s-cis form in solution to the 6-s-trans configuration in bR. The extension of the pi-conjugated system further increases the red-shift by 2400 cm(-1). The remaining factors are due to the change in dispersion interactions. Using an estimate of about 1000 cm(-1) in the dispersion contribution by Houjou et al., we obtained a theoretical opsin shift of 5200 cm(-1) in bR, which is in excellent agreement with the experimental value of 5100 cm(-1). Structural analysis of the PSB binding site revealed the specific interactions that make contributions to the observed opsin shift. The combined QM/MM method used in the present study provides an opportunity to accurately model the photoisomerization and proton transfer reactions in bR.
Collapse
Affiliation(s)
- Ramkumar Rajamani
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
35
|
Kietis P, Vengris M, Valkunas L. Electrical-to-mechanical coupling in purple membranes: membrane as electrostrictive medium. Biophys J 2001; 80:1631-40. [PMID: 11259278 PMCID: PMC1301354 DOI: 10.1016/s0006-3495(01)76135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present acousto-electrical measurements performed on dry films of purple membranes (PM) of Halobacterium salinarium. The purpose of these measurements is to determine the relation between mechanical and electrical phenomena in bacteriorhodopsin and to define the role of the protein in the proton transfer process. Electrical-to-mechanical coupling in PMs manifests itself as direct and inverse piezoelectric effects. Measurements performed on the samples with different degrees of PM orientation and at various values of the externally applied cross-membrane electric field indicate that piezoelectric phenomena in PMs arise from the electric asymmetry of the membranes, i.e., they originate from electrostriction. Experiments with samples made of oriented PMs allow estimation of the value of the intrinsic cross-membrane electric field, which is approximately 10(8) V/m. A hypothetical model of PM is presented where the electrical-to-mechanical coupling is suggested to be the main driving force for the proton translocation against the Coulomb forces acting in the membrane.
Collapse
Affiliation(s)
- P Kietis
- Physics Faculty, Vilnius University, 2054 Vilnius, Lithuania
| | | | | |
Collapse
|
36
|
Chapter 2 Triggering of photomovement - molecular basis. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Kulcsár A, Groma GI, Lanyi JK, Váró G. Characterization of the proton-transporting photocycle of pharaonis halorhodopsin. Biophys J 2000; 79:2705-13. [PMID: 11053142 PMCID: PMC1301150 DOI: 10.1016/s0006-3495(00)76508-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The photocycle of pharaonis halorhodopsin was investigated in the presence of 100 mM NaN(3) and 1 M Na(2)SO(4). Recent observations established that the replacement of the chloride ion with azide transforms the photocycle from a chloride-transporting one into a proton-transporting one. Kinetic analysis proves that the photocycle is very similar to that of bacteriorhodopsin. After K and L, intermediate M appears, which is missing from the chloride-transporting photocycle. In this intermediate the retinal Schiff base deprotonates. The rise of M in halorhodopsin is in the microsecond range, but occurs later than in bacteriorhodopsin, and its decay is more accentuated multiphasic. Intermediate N cannot be detected, but a large amount of O accumulates. The multiphasic character of the last step of the photocycle could be explained by the existence of a HR' state, as in the chloride photocycle. Upon replacement of chloride ion with azide, the fast electric signal changes its sign from positive to negative, and becomes similar to that detected in bacteriorhodopsin. The photocycle is enthalpy-driven, as is the chloride photocycle of halorhodopsin. These observations suggest that, while the basic charge translocation steps become identical to those in bacteriorhodopsin, the storage and utilization of energy during the photocycle remains unchanged by exchanging chloride with azide.
Collapse
Affiliation(s)
- A Kulcsár
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | | | | | | |
Collapse
|
38
|
Hayashi S, Ohmine I. Proton Transfer in Bacteriorhodopsin: Structure, Excitation, IR Spectra, and Potential Energy Surface Analyses by an ab Initio QM/MM Method. J Phys Chem B 2000. [DOI: 10.1021/jp001508r] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigehiko Hayashi
- Chemistry Department, Faculty of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan 464-8602
| | - Iwao Ohmine
- Chemistry Department, Faculty of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan 464-8602
| |
Collapse
|
39
|
Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:75-94. [PMID: 10984592 DOI: 10.1016/s0005-2728(00)00131-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Light-induced changes of the proton affinities of amino acid side groups are the driving force for proton translocation in bacteriorhodopsin. Recent progress in obtaining structures of bacteriorhodopsin and its intermediates with an increasingly higher resolution, together with functional studies utilizing mutant pigments and spectroscopic methods, have provided important information on the molecular architecture of the proton transfer pathways and the key groups involved in proton transport. In the present paper I consider mechanisms of light-induced proton release and uptake and intramolecular proton transport and mechanisms of modulation of proton affinities of key groups in the framework of these data. Special attention is given to some important aspects that have surfaced recently. These are the coupling of protonation states of groups involved in proton transport, the complex titration of the counterion to the Schiff base and its origin, the role of the transient protonation of buried groups in catalysis of the chromophore's thermal isomerization, and the relationship between proton affinities of the groups and the pH dependencies of the rate constants of the photocycle and proton transfer reactions.
Collapse
Affiliation(s)
- S P Balashov
- Center for Biophysics and Computational Biology, Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, B107 CLSL, 601 S. Goodwin Ave., 61801, Urbana, IL, USA.
| |
Collapse
|
40
|
Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:135-47. [PMID: 10812029 DOI: 10.1016/s0005-2728(00)00064-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical techniques. The current molecular picture of catalysis by BR will be presented with examples from time-resolved spectroscopy. FT-IR spectroscopy monitors single proton transfer events within bacteriorhodopsin and judiciously positioned pH indicators detect proton migration at the membrane surface. Emerging properties are briefly outlined that underlie the efficient proton transfer across and along biological membranes.
Collapse
Affiliation(s)
- J Heberle
- Research Centre Jülich, IBI-2: Structural Biology, D-52425, Jülich, Germany.
| |
Collapse
|
41
|
Hampp N. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chem Rev 2000; 100:1755-1776. [PMID: 11777419 DOI: 10.1021/cr980072x] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Norbert Hampp
- Institute for Physical Chemistry, University of Marburg, D-35032 Marburg, Germany, and Materials Science Center, D-35032 Marburg, Germany
| |
Collapse
|
42
|
The dielectric effect of the environment on the p K a of the retinal Schiff base and on the stabilization of the ion pair in bacteriorhodopsin. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(99)00441-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Rink T, Pfeiffer M, Oesterhelt D, Gerwert K, Steinhoff HJ. Unraveling photoexcited conformational changes of bacteriorhodopsin by time resolved electron paramagnetic resonance spectroscopy. Biophys J 2000; 78:1519-30. [PMID: 10692336 PMCID: PMC1300749 DOI: 10.1016/s0006-3495(00)76704-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.
Collapse
Affiliation(s)
- T Rink
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
44
|
Muneyuki E, Fukami TA. Properties of the stochastic energization-relaxation channel model for vectorial ion transport. Biophys J 2000; 78:1166-75. [PMID: 10692306 PMCID: PMC1300719 DOI: 10.1016/s0006-3495(00)76674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A model for the primary active transport by an ion pump protein is proposed. The model, the "energization-relaxation channel model," describes an ion pump as a multiion channel that undergoes stochastic transitions between two conformational states by external energy supply. When the potential profile along ion transport pathway is asymmetrical, a net ion flux is induced by the transitions. In this model, the coupling of the conformational change and ion transport is stochastic and loose. The model qualitatively reproduces known properties of active transport such as the effect of ion concentration gradient and membrane potential on the rate of transport and the inhibition of ion transport at high ion concentration. We further examined the effect of various parameters on the ion transport properties of this model. The efficiency of the coupling was almost 100% under some conditions.
Collapse
Affiliation(s)
- E Muneyuki
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | | |
Collapse
|
45
|
Tajkhorshid E, Baudry J, Schulten K, Suhai S. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophys J 2000; 78:683-93. [PMID: 10653781 PMCID: PMC1300671 DOI: 10.1016/s0006-3495(00)76626-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The planarity of the polyene chain of the retinal chromophore in bacteriorhodopsin is studied using molecular dynamics simulation techniques and applying different force-field parameters and starting crystal structures. The largest deviations from a planar structure are observed for the C(13)==C(14) and C(15)==N(16) double bonds in the retinal Schiff base structure. The other dihedral angles along the polyene chain of the chromophore, although having lower torsional barriers in some cases, do not significantly deviate from the planar structure. The results of the simulations of different mutants of the pigment show that, among the studied amino acids of the binding pocket, the side chain of Trp-86 has the largest impact on the planarity of retinal, and the mutation of this amino acid to alanine leads to chromophore planarity. Deletion of the methyl C(20), removal of a water molecule hydrogen-bonded to H(15), or mutation of other amino acids to alanine did not show any significant influence on the distortion of the chromophore. The results from the present study suggest the importance of the bulky residue of Trp-86 in the isomerization process, in both ground and excited states of the chromophore, and in fine-tuning of the pK(a) of the retinal protonated Schiff base in bacteriorhodopsin. The dark adaptation of the pigment and the last step of the bacteriorhodopsin photocycle imply low barriers against the rotation of the double bonds in the Schiff base region. The twisted double bonds found in the present study are consistent with the proposed mechanism of these ground state isomerization events.
Collapse
Affiliation(s)
- E Tajkhorshid
- Theoretical Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
46
|
Molteni C, Frank I, Parrinello M. An Excited State Density Functional Theory Study of the Rhodopsin Chromophore. J Am Chem Soc 1999. [DOI: 10.1021/ja983708a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Molteni
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - I. Frank
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - M. Parrinello
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
47
|
Domínguez B, Iglesias B, de Lera AR. A comprehensive survey of stille-type Csp2-Csp2 single bond forming processes in the synthesis of retinoic acid and analogs. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00962-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Kalaidzidis IV, Belevich IN, Kalaidzidis YL, Kaulen AD. Membrane potential stabilizes the O intermediate in liposomes containing bacteriorhodopsin. FEBS Lett 1999; 459:143-7. [PMID: 10508934 DOI: 10.1016/s0014-5793(99)01193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the bacteriorhodopsin-containing proteoliposomes, a laser flash is found to induce formation of a bathointermediate decaying in several seconds, the difference spectrum being similar to the purple-blue transition. Different pH buffers do not affect the intermediate, whereas an uncoupler, gramicidin A, and lipophilic ions accelerate decay of the intermediate or inhibit its formation. In the liposomes containing E204Q bacteriorhodopsin mutant, formation of the intermediate is suppressed. In the wild-type bacteriorhodopsin liposomes, the bathointermediate formation is pH-independent within the pH 5-7 range. The efficiency of the long-lived O intermediate formation increases at a low pH. In the wild-type as well as in the E204Q mutant purple membrane, the O intermediate decay is slowed down at slightly higher pH values than that of the purple-blue transition. It is suggested that the membrane potential affects the equilibrium between the bacteriorhodopsin ground state (Glu-204 is protonated and Asp-85 is deprotonated) and the O intermediate (Asp-85 is protonated and Glu-204 is deprotonated), stabilizing the latter by changing the relative affinity of Asp-85 and Glu-204 to H(+). At a low pH, protonation of a proton-releasing group (possibly Glu-194) in the bacteriorhodopsin ground state seems to prevent deprotonation of the Glu-204 during the photocycle. Thus, all protonatable residues of the outward proton pathway should be protonated in the O intermediate. Under such conditions, membrane potential stabilization of the O intermediate in the liposomes can be attributed to the direct effect of the potential on the pK value of Asp-85.
Collapse
Affiliation(s)
- I V Kalaidzidis
- Department of Photobiochemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia
| | | | | | | |
Collapse
|
49
|
Moltke S, Wallat I, Sakai N, Nakanishi K, Brown MF, Heyn MP. The angles between the C(1)-, C(5)-, and C(9)-methyl bonds of the retinylidene chromophore and the membrane normal increase in the M intermediate of bacteriorhodopsin: direct determination with solid-state (2)H NMR. Biochemistry 1999; 38:11762-72. [PMID: 10512633 DOI: 10.1021/bi990593u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The orientations of three methyl bonds of the retinylidene chromophore of bacteriorhodopsin were investigated in the M photointermediate using deuterium solid-state NMR ((2)H NMR). In this key intermediate, the chromophore has a 13-cis, 15-anti conformation and a deprotonated Schiff base. Purple membranes containing wild-type or mutant D96A bacteriorhodopsin were regenerated with retinals specifically deuterated in the methyl groups of either carbon C(1) or C(5) of the beta-ionone ring or carbon C(9) of the polyene chain. Oriented hydrated films were formed by drying concentrated suspensions on glass plates at 86% relative humidity. The lifetime of the M state was increased in the wild-type samples by applying a guanidine hydrochloride solution at pH 9.5 and in the D96A sample by raising the pH. (2)H NMR experiments were performed on the dark-adapted ground state (a 2:1 mixture of 13-cis, 15-syn and all-trans, 15-anti chromophores), the cryotrapped light-adapted state (all-trans, 15-anti), and the cryotrapped M intermediate (13-cis, 15-anti) at -50 degrees C. Bacteriorhodopsin was first completely converted to M under steady illumination of the hydrated films at +5 degrees C and then rapidly cooled to -50 degrees C in the dark. From a tilt series of the oriented sample in the magnetic field and an analysis of the (2)H NMR line shapes, the angles between the individual C-CD(3) bonds and the membrane normal could be determined even in the presence of a substantial degree of orientational disorder. While only minor differences were detected between dark- and light-adapted states, all three angles increase in the M state. This is consistent with an upward movement of the C(5)-C(13) part of the polyene chain toward the cytoplasmic surface or with increased torsional strain. The C(9)-CD(3) bond shows the largest orientational change of 7 degrees in M. This reorientation of the chromophore in the binding pocket provides direct structural support for previous suggestions (based on spectroscopic evidence) for a steric interaction in M between the C(9)-methyl group and Trp 182 in helix F.
Collapse
Affiliation(s)
- S Moltke
- Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
50
|
Tajkhorshid E, Suhai S. Influence of the Methyl Groups on the Structure, Charge Distribution, and Proton Affinity of the Retinal Schiff Base. J Phys Chem B 1999. [DOI: 10.1021/jp983742b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emadeddin Tajkhorshid
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Sándor Suhai
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|