1
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
2
|
Čermáková P, Kovalinka T, Ferenczyová K, Horváth A. Coenzyme Q 2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids. ACTA ACUST UNITED AC 2019; 26:17. [PMID: 30901308 PMCID: PMC6430614 DOI: 10.1051/parasite/2019017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
The measurement of respiratory chain enzyme activities is an integral part of basic research as well as for specialized examinations in clinical biochemistry. Most of the enzymes use ubiquinone as one of their substrates. For current in vitro measurements, several hydrophilic analogues of native ubiquinone are used depending on the enzyme and the workplace. We tested five readily available commercial analogues and we showed that Coenzyme Q2 is the most suitable for the measurement of all tested enzyme activities. Use of a single substrate in all laboratories for several respiratory chain enzymes will improve our ability to compare data, in addition to simplifying the stock of chemicals required for this type of research.
Collapse
Affiliation(s)
- Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Tomáš Kovalinka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Ferenczyová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
4
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
5
|
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 2015; 96:55-67. [PMID: 25557487 DOI: 10.1111/mmi.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
Trypanosomatids are a very diverse group composed of monoxenous and dixenous parasites belonging to the excavate class Kinetoplastea. Here we studied the respiration of five monoxenous species (Blechomonas ayalai, Herpetomonas muscarum, H. samuelpessoai, Leptomonas pyrrhocoris and Sergeia podlipaevi) introduced into culture, each representing a novel yet globally distributed and/or species-rich clade, and compare them with well-studied flagellates Trypanosoma brucei, Phytomonas serpens, Crithidia fasciculata and Leishmania tarentolae. Differences in structure and activities of respiratory chain complexes, respiration and other biochemical parameters recorded under laboratory conditions reveal their substantial diversity, likely a reflection of different host environments. Phylogenetic relationships of the analysed trypanosomatids do not correlate with their biochemical parameters, with the differences within clades by far exceeding those among clades. As the S. podlipaevi canonical respiratory chain complexes have very low activities, we believe that its mitochondrion is utilised for purposes other than oxidative phosphorylation. Hence, the single reticulated mitochondrion of diverse trypanosomatids seems to retain multipotency, with the capacity to activate its individual components based on the host environment.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
6
|
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol 2014; 193:55-65. [DOI: 10.1016/j.molbiopara.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
7
|
Complex I of Trypanosomatidae: does it exist? Trends Parasitol 2008; 24:310-7. [PMID: 18534909 DOI: 10.1016/j.pt.2008.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/11/2008] [Accepted: 03/11/2008] [Indexed: 12/31/2022]
Abstract
The presence of complex I, or NADH dehydrogenase, in Trypanosomatidae is debated. Several subunits of complex I have been identified by biochemical studies, but the overall composition of the complex has remained elusive. Here, the authors review the present literature related to this mitochondrial activity and carry out a bioinformatic analysis to allow the prediction of the composition of a putative trypanosomatid complex I. The complex comprises at least 19 subunits and has a minimum mass of 660 kDa. It is larger than the corresponding bacterial enzyme but smaller than the typical mitochondrial enzyme of eukaryotes. All subunits known to be involved in electron transport are present, but the complex does not seem to be involved in energy transduction because four membrane subunits, normally encoded by the mitochondrial genome and supposed to be involved in proton extrusion, are missing.
Collapse
|
8
|
Cermáková P, Verner Z, Man P, Lukes J, Horváth A. Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida). FEBS J 2007; 274:3150-8. [PMID: 17521330 DOI: 10.1111/j.1742-4658.2007.05847.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.
Collapse
Affiliation(s)
- Petra Cermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
9
|
Abstract
Mitochondrial genomes have been sequenced from a wide variety of organisms, including an increasing number of parasites. They maintain some characteristics in common across the spectrum of life-a common core of genes related to mitochondrial respiration being most prominent-but have also developed a great diversity of gene content, organisation, and expression machineries. The characteristics of mitochondrial genomes vary widely among the different groups of protozoan parasites, from the minute genomes of the apicomplexans to amoebae with 20 times as many genes. Kinetoplastid protozoa have a similar number of genes to metazoans, but the details of gene organisation and expression in kinetoplastids require extraordinary mechanisms. Mitochondrial genes in nematodes and trematodes appear quite sedate in comparison, but a closer look shows a strong tendency to unusual tRNA structure and alternative initiation codons among these groups. Mitochondrial genes are increasingly coming into play as aids to phylogenetic and epidemiologic analyses, and mitochondrial functions are being recognised as potential drug targets. In addition, examination of mitochondrial genomes is producing further insights into the diversity of the wide-ranging group of organisms comprising the general category of parasites.
Collapse
Affiliation(s)
- J E Feagin
- Seattle Biomedical Research Institute, 4 Nickerson St., Seattle, WA 98109-1651, USA.
| |
Collapse
|
10
|
Maslov DA, Nawathean P, Scheel J. Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 1999; 99:207-21. [PMID: 10340485 DOI: 10.1016/s0166-6851(99)00028-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In plant-dwelling trypanosomatids from the genus Phytomonas, mitochondrial functions, such as cytochrome mediated respiration, ATP production and Krebs cycle, are missing, and cell energetics is based on the glycolysis. Using Blue Native/Tricine-SDS two-dimensional gel electrophoretic analysis, we observed that mitochondrial respiratory Complexes III (cytochrome bc1) and IV (cytochrome c oxidase) were absent in Phytomonas serpens; however, Complex V (ATPase) was present. A deletion of the genes for cytochrome c oxidase subunit III (COIII) and apocytochrome b (Cyb) was identified within the 6234 bp sequenced region of the 31 kb maxicircle kinetoplast DNA. Genes, found in this region, include 12S and 9S ribosomal RNAs, subunits 7, 8 and 9 of NADH dehydrogenase (ND7, ND8 and ND9) and subunit 6 of ATPase (A6 or MURF4), as well as the genes (MURF1, MURF5 and G3) with unknown function. Most genes are actively transcribed and some mRNAs are edited. Fully edited mRNAs for A6 and G3 were abundant, while edited ND7 transcripts were rare, and only partially edited and pre-edited transcripts for ND8 were detected. The data show that the mitochondrial genome of P. serpens is functional, although its functions may be limited to expressing the ATPase and, possibly, NADH dehydrogenase complexes.
Collapse
Affiliation(s)
- D A Maslov
- Department of Biology, University of California, Riverside 92521, USA.
| | | | | |
Collapse
|
11
|
Speijer D, Breek CK, Muijsers AO, Hartog AF, Berden JA, Albracht SP, Samyn B, Van Beeumen J, Benne R. Characterization of the respiratory chain from cultured Crithidia fasciculata. Mol Biochem Parasitol 1997; 85:171-86. [PMID: 9106191 DOI: 10.1016/s0166-6851(96)02823-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial mRNAs encoding subunits of respiratory-chain complexes in kinetoplastids are post-transcriptionally edited by uridine insertion and deletion. In order to identify the proteins encoded by these mRNAs, we have analyzed respiratory-chain complexes from cultured cells of Crithidia fasciculata with the aid of 2D polyacrylamide gel electrophoresis (PAGE). The subunit composition of F0F1-ATPase (complex V), identified on the basis of its activity as an oligomycin-sensitive ATPase, is similar to that of bovine mitochondrial F0F1-ATPase. Amino acid sequence analysis, combined with binding studies using dicyclohexyldiimide and azido ATP allowed the identification of two F0 subunits (b and c) and all of the F1 subunits. The F0 b subunit has a low degree of similarity to subunit b from other organisms. The F1 alpha subunit is extremely small making the beta subunit the largest F1 subunit. Other respiratory-chain complexes were also analyzed. Interestingly, an NADH: ubiquinone oxidoreductase (complex I) appeared to be absent, as judged by electron paramagnetic resonance (EPR), enzyme activity and 2D PAGE analysis. Cytochrome c oxidase (complex IV) displayed a subunit pattern identical to that reported for the purified enzyme, whereas cytochrome c reductase (complex III) appeared to contain two extra subunits. A putative complex II was also identified. The amino acid sequences of the subunits of these complexes also show a very low degree of similarity (if any) to the corresponding sequences in other organisms. Remarkably, peptide sequences derived from mitochondrially encoded subunits were not found in spite of the fact that sequences were obtained of virtually all subunits of complex III, IV and V.
Collapse
Affiliation(s)
- D Speijer
- Department of Biochemistry, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Speijer D, Muijsers AO, Dekker H, de Haan A, Breek CK, Albracht SP, Benne R. Purification and characterization of cytochrome c oxidase from the insect trypanosomatid Crithidia fasciculata. Mol Biochem Parasitol 1996; 79:47-59. [PMID: 8844671 DOI: 10.1016/0166-6851(96)02648-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochrome c oxidase was purified from the mitochondrial lysate of the insect trypanosomatid Crithidia fasciculata with the aid of a methyl hydrophobic interaction column in a rapid one-step procedure. The purified complex displayed all characteristics expected from a eukaryotic cytochrome c oxidase: the presence of CuA in electron paramagnetic resonance analysis, a characteristic 605 nm peak in reduced-minus-oxidized optical spectroscopy, and the capacity to efficiently oxidize homologous, but not heterologous, cytochrome c. Two-dimensional PAGE showed that C. fasciculata cytochrome c oxidase consists of at least 10 different subunits. N-terminal sequences were obtained from the six smallest subunits of the complex, one of them showing significant similarity to Neurospora crassa cytochrome c oxidase subunit V. The N-terminus of each of the four largest subunits was found to be blocked.
Collapse
Affiliation(s)
- D Speijer
- E.C. Slater Institute, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Arts GJ, Benne R. Mechanism and evolution of RNA editing in kinetoplastida. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:39-54. [PMID: 8652667 DOI: 10.1016/0167-4781(96)00021-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- G J Arts
- E.C. Slater Institute, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | |
Collapse
|
14
|
Abstract
A rooted phylogenetic tree of the kinetoplastid protozoa has been constructed that, together with a comparative analysis of editing of several genes, leads to the surprising conclusion that extensive or pan-editing with multiple overlapping guide RNAs is more ancient than 5'-editing. The mechanism of editing is still uncertain, but multiple ribonucleoprotein complexes have been identified that contain components of the enzymatic machinery.
Collapse
Affiliation(s)
- L Simpson
- Howard Hughes Medical Institute, Los Angeles
| | | |
Collapse
|