Berman M, Fischman AJ, Southern J, Carter E, Mirecki F, Strauss HW, Nunn A, Gewirtz H. Myocardial adaptation during and after sustained, demand-induced ischemia. Observations in closed-chest, domestic swine.
Circulation 1996;
94:755-62. [PMID:
8772699 DOI:
10.1161/01.cir.94.4.755]
[Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND
We tested the hypotheses that prolonged, demand-induced myocardial ischemia plateaus and that on relief of stress, myocardial function remains depressed, with proportionate reductions in blood flow and oxygen consumption indicative of hibernation.
METHODS AND RESULTS
Closed-chest swine (n = 20) were prepared with an 80% coronary stenosis. Hemodynamics, myocardial blood flow, oxygen, and lactate metabolism were measured in group 1 (n = 9) (1) at baseline, (2) at 10 and 30 minutes of atrial pacing plus intravenous norepinephrine infusion, and (3) in 5 of 9 (group 1a) at approximately 50 minutes after stress. Group 1a had ischemia assessed with 99mTc-labeled BMS 181321. In group 2 (n = 11), myocardial function was determined with radionuclide ventriculography (n = 8), and myocardial necrosis was looked for with trichlorotetrazolium chloride staining (n = 7), histology (n = 10), and myocardial creatine kinase concentration (n = 4). Baseline stenotic-zone endocardial blood flow was reduced versus the normal zone (0.94 +/- 0.33 versus 1.38 +/- 0.27 mL.min-1.g-1, mean +/- SD; P < .05), whereas epicardial flows were comparable (1.15 +/- 0.36 versus 1.16 +/- 0.26 mL.min-1.g-1). Stenotic-zone endocardial flow was unchanged versus baseline at 10 and 30 minutes of stress, whereas epicardial flow increased (1.62 +/- 0.53 mL.min-1.g-1 at 10 minutes and 1.44 +/- 0.51 mL.min-1.g-1 at 30 minutes, both P < .05). Myocardial oxygen consumption increased versus baseline (10.8 +/- 2.9 mL.min-1.100 g-1) at 10 and 30 minutes of stress (14.9 +/- 5.2 and 13.9 +/- 4.5 mL.min-1.100 g-1, both P < .05). After stress, stenotic-zone blood flow and oxygen consumption were reduced approximately 30% (P < .01) versus baseline. In group 2, stenotic-zone contraction with stress declined versus baseline and remained depressed throughout recovery. Histological and biochemical evidence of myocardial necrosis was absent in group 2.
CONCLUSIONS
Myocardial ischemia induced by a sustained increase in oxygen demand may not progress to necrosis but may instead plateau. After relief of stress, myocardial function remains depressed, with a proportionate reduction in blood flow and oxygen consumption consistent with myocardial hibernation.
Collapse