1
|
Georgiev D, Torkmani A, Song R, Limousin P, Jahanshahi M. Daily Habits in Parkinson's Disease: Validation of the Daily Habit Scale. Mov Disord Clin Pract 2023; 10:1485-1495. [PMID: 37868920 PMCID: PMC10585975 DOI: 10.1002/mdc3.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 10/24/2023] Open
Abstract
Objective The objective of the study was to validate a new scale for assessing habitual behavior-the Daily Habit Scale in patients with Parkinson's disease. Background Parkinson's disease patients are impaired in habit learning and skill acquisition. Despite repeated practice, they have difficulty developing habitual responses. Methods One hundred seventy-nine patients (Median (Mdn) = 69 [64-76], 65 females) participated in the study. Corrected item-to-total correlations were calculated to assess the item-convergent and item discriminant validity. Confirmatory factor analysis and assessment of internal consistency were also carried out. Concurrent validity in respect to measures of anxiety and depression, apathy, impulsivity, personality, multidimensional health locus of control, and health-related quality of life was also calculated. To determine the test-retest reliability of the scale, 30 patients (Mdn = 69 [66-73], 9 females) completed a second copy of the scale 6 months after the first. Results Twenty-nine items (76%) and 9 items (24%) of the 38-item scale, respectively, showed a very good and good convergent validity. All the items discriminated between their own factor and the other factors. The comparative fit index of 0.932 indicated an acceptable model fit of the data, whereas the root mean square error of approximation of 0.06 moderate model fit. The scale had a good internal consistency (Cronbach α = 0.792), and a moderate test-retest reliability (0.57). Females had higher scores on two factors compared to men (Factor 3: household activities and Factor 8: sleep-related activities). Conclusions The Daily Habit Scale is a reliable and valid tool to measure daily habits in Parkinson's disease.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department Clinical and Motor Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
- Department of NeurologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Artificial Intelligence Lab, Faculty of Computer and Information SciencesUniversity of LjubljanaLjubljanaSlovenia
| | - Asma Torkmani
- Department Clinical and Motor Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Ruifeng Song
- Department Clinical and Motor Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Patricia Limousin
- Department Clinical and Motor Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Marjan Jahanshahi
- Department Clinical and Motor Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Goelman G, Dan R, Růžička F, Bezdicek O, Jech R. Altered sensorimotor fMRI directed connectivity in Parkinson's disease patients. Eur J Neurosci 2020; 53:1976-1987. [PMID: 33222299 DOI: 10.1111/ejn.15053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Dopamine depletion in the axons of Parkinson's disease (PD) patients precedes depletion in cell bodies thus proposing that macroscopic connectivity can be used to understand disease mechanism. A novel multivariate functional connectivity analysis, based on high order coherence among four fMRI BOLD signals was applied on resting-state fMRI data of controls and PD patients (OFF and ON medication states) and unidirectional multiple-region pathways in the sensorimotor system were identified. Pathways were classified as "preserved" (unaffected by the disease), "damaged" (not observed in patients) and "corrected" (observed in controls and in PD-ON state). The majority of all pathways were feedforward, most of them with the pattern "S1→M1→SMA." Of these pathways, 67% were "damaged," 28% "preserved," and 5% "corrected." Prefrontal cortex (PFC) afferent and efferent pathways that corresponded to goal directed and habitual activities corresponded to recurrent circuits. Eighty-one percent of habitual afferent had internal cue (i.e., M1→S1→), of them 79% were "damaged" and the rest "preserved." All goal-directed afferent had external cue (i.e., S1→M1→) with third "damaged," third "preserved," and third "corrected." Corrected pathways were initiated in the dorsolateral PFC. Reduced connectivity of the SMA and PFC resulted from reduced sensorimotor afferent to these regions. Reduced sensorimotor internal cues to the PFC resulted with reduced habitual processes. Levodopa effects were for pathways that started in region reach with dopamine receptors. This methodology can enrich understudying of PD mechanisms in other (e.g., the default mode network) systems.
Collapse
Affiliation(s)
- Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Dan
- Department of Neurology, Hadassah Hebrew University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic.,Na Homolce Hospital, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic.,Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
3
|
Ferrazzoli D, Ortelli P, Cucca A, Bakdounes L, Canesi M, Volpe D. Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson's disease. Neurodegener Dis Manag 2020; 10:41-55. [PMID: 32039653 DOI: 10.2217/nmt-2019-0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) results in a complex deterioration of motor behavior. Effective pharmacological or surgical treatments addressing the whole spectrum of both motor and cognitive symptoms are lacking. The cumulative functional impairment may have devastating socio-economic consequences on both patients and caregivers. Comprehensive models of care based on multidisciplinary approaches may succeed in better addressing the overall complexity of PD. Neurorehabilitation is a highly promising non-pharmacological intervention for managing PD. The scientific rationale beyond rehabilitation and its practical applicability remain to be established. In the present perspective, we aim to discuss the current evidence supporting integrated motor-cognitive and aerobic rehabilitation approaches for patients with PD while suggesting a practical framework to optimize this intervention in the next future.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Fresco Parkinson Center, Department of Parkinson's disease, Movement Disorders & Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital - Gravedona ed Uniti, Como, 22015, Italy
| | - Paola Ortelli
- Fresco Parkinson Center, Department of Parkinson's disease, Movement Disorders & Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital - Gravedona ed Uniti, Como, 22015, Italy
| | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, 36057, Italy.,The Marlene & Paolo Fresco Institute for Parkinson's & Movement Disorders, Department of Neurology, NYU School of Medicine, New York, NY 10017, USA
| | - Leila Bakdounes
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, 36057, Italy
| | - Margherita Canesi
- Fresco Parkinson Center, Department of Parkinson's disease, Movement Disorders & Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital - Gravedona ed Uniti, Como, 22015, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, 36057, Italy
| |
Collapse
|
4
|
Olson M, Lockhart TE, Lieberman A. Motor Learning Deficits in Parkinson's Disease (PD) and Their Effect on Training Response in Gait and Balance: A Narrative Review. Front Neurol 2019; 10:62. [PMID: 30792688 PMCID: PMC6374315 DOI: 10.3389/fneur.2019.00062] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder traditionally associated with degeneration of the dopaminergic neurons within the substantia nigra, which results in bradykinesia, rigidity, tremor, and postural instability and gait disability (PIGD). The disorder has also been implicated in degradation of motor learning. While individuals with PD are able to learn, certain aspects of learning, especially automatic responses to feedback, are faulty, resulting in a reliance on feedforward systems of movement learning and control. Because of this, patients with PD may require more training to achieve and retain motor learning and may require additional sensory information or motor guidance in order to facilitate this learning. Furthermore, they may be unable to maintain these gains in environments and situations in which conscious effort is divided (such as dual-tasking). These shortcomings in motor learning could play a large part in degenerative gait and balance symptoms often seen in the disease, as patients are unable to adapt to gradual sensory and motor degradation. Research has shown that physical and exercise therapy can help patients with PD to adapt new feedforward strategies to partially counteract these symptoms. In particular, balance, treadmill, resistance, and repeated perturbation training therapies have been shown to improve motor patterns in PD. However, much research is still needed to determine which of these therapies best alleviates which symptoms of PIGD, the needed dose and intensity of these therapies, and long-term retention effects. The benefits of such technologies as augmented feedback, motorized perturbations, virtual reality, and weight-bearing assistance are also of interest. This narrative review will evaluate the effect of PD on motor learning and the effect of motor learning deficits on response to physical therapy and training programs, focusing specifically on features related to PIGD. Potential methods to strengthen therapeutic effects will be discussed.
Collapse
Affiliation(s)
- Markey Olson
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Muhammad Ali Movement Disorders Clinic, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Thurmon E. Lockhart
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Abraham Lieberman
- Muhammad Ali Movement Disorders Clinic, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
5
|
Kinematic and Kinetic Patterns Related to Free-Walking in Parkinson's Disease. SENSORS 2018; 18:s18124224. [PMID: 30513798 PMCID: PMC6308417 DOI: 10.3390/s18124224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022]
Abstract
The aim of this study is to compare the properties of free-walking at a natural pace between mild Parkinson’s disease (PD) patients during the ON-clinical status and two control groups. In-shoe pressure-sensitive insoles were used to quantify the temporal and force characteristics of a 5-min free-walking in 11 PD patients, in 16 young healthy controls, and in 12 age-matched healthy controls. Inferential statistics analyses were performed on the kinematic and kinetic parameters to compare groups’ performances, whereas feature selection analyses and automatic classification were used to identify the signature of parkinsonian gait and to assess the performance of group classification, respectively. Compared to healthy subjects, the PD patients’ gait pattern presented significant differences in kinematic parameters associated with bilateral coordination but not in kinetics. Specifically, patients showed an increased variability in double support time, greater gait asymmetry and phase deviation, and also poorer phase coordination. Feature selection analyses based on the ReliefF algorithm on the differential parameters in PD patients revealed an effect of the clinical status, especially true in double support time variability and gait asymmetry. Automatic classification of PD patients, young and senior subjects confirmed that kinematic predictors produced a slightly better classification performance than kinetic predictors. Overall, classification accuracy of groups with a linear discriminant model which included the whole set of features (i.e., demographics and parameters extracted from the sensors) was 64.1%.
Collapse
|
6
|
Mak MKY, Cheung V, Ma S, Lu ZL, Wang D, Lou W, Shi L, Mok VCT, Chu WCW, Hallett M. Increased Cognitive Control During Execution of Finger Tap Movement in People with Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2016; 6:639-50. [PMID: 27372216 DOI: 10.3233/jpd-160849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies employed demanding and complex hand tasks to study the brain activation in people with Parkinson's Disease (PD). There is inconsistent finding about the cerebellar activity during movement execution of this patient population. OBJECTIVES This study aimed to examine the brain activation patterns of PD individuals in the on-state and healthy control subjects in a simple finger tapping task. METHODS Twenty-seven patients with PD and 22 age-matched healthy subjects were recruited for the study. Subjects were instructed to perform simple finger tapping tasks under self- and cue-initiated conditions in separate runs while their brain activations were captured using fMRI. RESULTS Healthy subjects had higher brain activity in contralateral precentral gyrus during the self-initiated task, and higher brain activity in the ipsilateral middle occipital gyrus during the cue-initiated task. PD patients had higher brain activity in the cerebellum Crus I (bilateral) and lobules VI (ipsilateral) during the self-initiated task and higher brain activity in the contralateral middle frontal gyrus during the cue-initiated task. When compared with healthy controls, PD patients had lower brain activity in the contralateral inferior parietal lobule during the self-initiated task, and lower brain activity in the ipsilateral cerebellum lobule VIII, lobule VIIB and vermis VIII, and thalamus during the cue-initiated task. Conjunction analysis indicated that both groups had activation in bilateral cerebellum and SMA and ipsilateral precentral gyrus and postcentral gyrus during both self- and cue-initiated movement. Individuals with PD exhibited higher brain activity in the executive zone (cerebellum Crus I and II) during self-initiated movement, and lower brain activity in the sensorimotor zone (i.e. lobule VIIb and VIII of the cerebellum) during cue-initiated movement. DISCUSSIONS The findings suggest that individuals with PD may use more executive control when performing simple movements.
Collapse
Affiliation(s)
- Margaret K Y Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Vinci Cheung
- Department of Counselling & Psychology, Shue Yan University, Hong Kong
| | - Shuangye Ma
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Zhong L Lu
- Center for Cognitive and Behavioral Brain Imaging, Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Wutao Lou
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis 2015; 82:226-234. [PMID: 26102020 DOI: 10.1016/j.nbd.2015.06.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
Abstract
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson's disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piu Chan
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Galvan A, Smith Y. The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson's disease. ACTA ACUST UNITED AC 2011; 1:179-189. [PMID: 22773963 DOI: 10.1016/j.baga.2011.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striatum receives glutamatergic inputs from two main thalamostriatal systems that originate either from the centre median/parafascicular complex (CM/PF-striatal system) or the rostral intralaminar, midline, associative and relay thalamic nuclei (non-CM/PF-striatal system). These dual thalamostriatal systems display striking differences in their anatomical and, most likely, functional organization. The CM/PF-striatal system is topographically organized, and integrated within functionally segregated basal ganglia-thalamostriatal circuits that process sensorimotor, associative and limbic information. CM/PF neurons are highly responsive to attention-related sensory stimuli, suggesting that the CM/PF-striatal system, through its strong connections with cholinergic interneurons, may play a role in basal ganglia-mediated learning, behavioral switching and reinforcement. In light of evidence for prominent CM/PF neuronal loss in Parkinson's disease, we propose that the significant CM-striatal system degeneration, combined with the severe nigrostriatal dopamine loss in sensorimotor striatal regions, may alter normal automatic actions, and shift the processing of basal ganglia-thalamocortical motor programs towards goal-directed behaviors.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, 954 Gatewood Road NE, Emory University Atlanta, GA 30329, USA; and Department of Neurology, School of Medicine, Emory University, 101 Woodruff Circle, Atlanta GA 30322 USA
| | | |
Collapse
|
9
|
Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 2010; 11:760-72. [PMID: 20944662 PMCID: PMC3124757 DOI: 10.1038/nrn2915] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action.
Collapse
Affiliation(s)
- Peter Redgrave
- Neuroscience Research Unit, Department of Psychology, University of Sheffield, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lukhanina EP, Karaban’ IN, A.Chivliklii M, Pil’kevich NA, Berezetskaya NM. Electromyographic Manifestations of Hereditary Signs of Extrapyramidal Insufficiency. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson's disease. Neuroimage 2009; 49:2581-7. [PMID: 19853664 DOI: 10.1016/j.neuroimage.2009.10.051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/07/2009] [Accepted: 10/15/2009] [Indexed: 11/16/2022] Open
Abstract
Patients with Parkinson's disease (PD) have difficulty in performing learned movements automatically. The neural mechanism of this deficiency remains unclear. In the current study, we used functional MRI (fMRI) and psychophysiological interaction (PPI) methods to investigate the changes in effective connectivity of the brain networks when movements become automatic in PD patients and age-matched normal controls. We found that during automaticity, the rostral supplementary motor area, cerebellum, and cingulate motor area had increased effective connectivity with brain networks in PD patients. In controls, in addition to these regions, the putamen also had automaticity-related strengthened interactions with brain networks. The dorsal lateral prefrontal cortex had more connectivity at the novel stage than in the automatic stage in normal subjects, but not in PD patients. The comparison of the PPI results between the groups showed that the rostral supplementary motor area, cerebellum, and cingulate motor area had significantly more increased effective connectivity with several regions in normal subjects than in PD. The changes of effective connectivity in some areas negatively correlated with the Unified Parkinson's Disease Rating Scale (UPDRS). Our findings show that some of the factors related to PD patients having difficulty achieving automaticity are less efficient neural coding of movement and failure to shift execution of automatic movements more subcortically. The changes of effective connectivity become more abnormal as the disorder progresses. In addition, in PD, the connections of the attentional networks are altered.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
12
|
Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson's disease. Brain 2005; 128:2250-9. [PMID: 15958505 DOI: 10.1093/brain/awh569] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patients with Parkinson's disease have great difficulty performing learned movements automatically. The neural contribution to the problem has not been identified. In the current study, we used functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of movement automaticity in Parkinson's disease patients. Fifteen patients with Parkinson's disease were recruited. Three patients were finally excluded because they could not achieve automaticity. The remaining 12 patients were aged from 52 to 67 years, with a mean age of 61.2 years. Controls included 14 age-matched normal subjects. The subjects were asked to practise four tasks, including two self-initiated, self-paced sequences of finger movements with different complexity until they could perform the tasks automatically. Two dual tasks were used to evaluate automaticity. For dual tasks, subjects performed a visual letter-counting task simultaneously with the sequential movements. Twelve normal subjects performed all sequences automatically. All patients performed sequences correctly; 12 patients could perform the simpler sequence automatically; and only 3 patients could perform the more complex sequence automatically. fMRI results showed that for both groups, sequential movements activated similar brain regions before and after automaticity was achieved. No additional activity was observed in the automatic condition. In normal subjects, many areas had reduced activity at the automatic stage, whereas in patients, only the bilateral superior parietal lobes and left insular cortex were less activated. Patients had greater activity in the cerebellum, premotor area, parietal cortex, precuneus and prefrontal cortex compared with normal subjects while performing automatic movements. We conclude that Parkinson's disease patients can achieve automaticity after proper training, but with more difficulty. Our study is the first to demonstrate that patients with Parkinson's disease require more brain activity to compensate for basal ganglia dysfunction in order to perform automatic movements.
Collapse
Affiliation(s)
- Tao Wu
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Lukhanina EP, Kapoustina MT, Karaban IN. A quantitative surface electromyogram analysis for diagnosis and therapy control in Parkinson's disease. Parkinsonism Relat Disord 2000; 6:77-86. [PMID: 10699388 DOI: 10.1016/s1353-8020(99)00052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computer analysis of EMG data on tonic and phasic activities of mm. biceps and triceps brahii was performed to evaluate objectively Parkinson's disease (PD) symptoms and to quantify levodopa therapy effects. Fifteen patients were evaluated in the OFF and eleven in the ON states. Ten healthy controls were also studied. The following EMG parameters were examined: average and maximal amplitudes at rest, occurrence of burst muscle discharges (BMD) with a frequency of 4-7Hz, phasic activation coefficients (PhAC) of the voluntarily contracting flexors and reflex agonist/antagonist muscle involvement under voluntary movement or tonic strain. Statistically significant correlations of resting EMG amplitudes and PhACs with the part III UPDRS motor scores were found. However, the level of antagonist muscle involvement correlated specifically with the part II UPDRS and dyskinesia (disability) scores. Treatment with levodopa produced a clear positive effect on resting amplitudes, PhAC values and BMD occurrence. But in some cases levodopa caused an enhancement of agonist and antagonist muscle involvement, which may be an objective indicator of the risk for developing drug-induced dyskinesia in PD patients.
Collapse
Affiliation(s)
- EP Lukhanina
- Department of Brain Physiology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | |
Collapse
|
14
|
Hogan T, Grimaldi R, Dingemanse J, Martin M, Lyons K, Koller W. The Parkinson's disease symptom inventory (PDSI): a comprehensive and sensitive instrument to measure disease symptoms and treatment side-effects. Parkinsonism Relat Disord 1999; 5:93-8. [DOI: 10.1016/s1353-8020(99)00023-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Accepted: 04/27/1999] [Indexed: 10/17/2022]
|
15
|
Talbot PR, Goulding PJ, Lloyd JJ, Snowden JS, Neary D, Testa HJ. Inter-relation between "classic" motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry 1995; 58:541-7. [PMID: 7745399 PMCID: PMC1073482 DOI: 10.1136/jnnp.58.5.541] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to examine the possible association between "classic" motor neuron disease (cMND) and frontotemporal dementia (FTD), using neuropsychological evaluation and single photon emission computed tomography (SPECT). Psychological tests assessing language, perceptuospatial, memory, and "frontal lobe" functions were given to patients with cMND and test scores were compared with those of normal control subjects. 99mTc-HMPAO SPECT was performed on patients with cMND, FTD and motor neuron disease (FTD/MND), FTD alone, and normal control subjects. Regional cerebral blood flow indices (rCBFi) were determined in 36 cortical regions, and differences between grouped rCBFi data were investigated by canonical discriminant analysis. There were significant group differences in the scores of picture sequencing and token tests in patients with cMND compared with normal controls. Regional CBFi data showed frontal and anterior temporal reductions in patients with cMND compared with normal controls. A similar pattern of SPECT abnormality was seen in patients with FTD/MND and FTD alone, but to a more pronounced degree than in patients with cMND. Neuropsychological and SPECT findings in cMND, FTD/MND, and FTD showed a common pattern of cerebral involvement, most pronounced in the second two conditions. It is suggested that cMND, FTD/MND, and FTD represent a clinical range of a pathological continuum.
Collapse
Affiliation(s)
- P R Talbot
- Department of Neurology, Manchester Royal Infirmary, UK
| | | | | | | | | | | |
Collapse
|