1
|
Mahdavi M, Prévost K, Balthazar P, Hus IFP, Duchesne É, Dumont N, Gagné-Ouellet V, Gagnon C, Laforest-Lapointe I, Massé E. Disturbance of the human gut microbiota in patients with Myotonic Dystrophy type 1. Comput Struct Biotechnol J 2024; 23:2097-2108. [PMID: 38803516 PMCID: PMC11128782 DOI: 10.1016/j.csbj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a rare autosomal dominant genetic disorder. Although DM1 is primarily characterized by progressive muscular weakness, it exhibits many multisystemic manifestations, such as cognitive deficits, cardiac conduction abnormalities, and cataracts, as well as endocrine and reproductive issues. Additionally, the gastrointestinal (GI) tract is frequently affected, encompassing the entire digestive tract. However, the underlying causes of these GI symptoms remain uncertain, whether it is biomechanical problems of the intestine, involvement of bacterial communities, or both. The primary objective of this study is to investigate the structural changes in the gut microbiome of DM1 patients. To achieve this purpose, 35 patients with DM1 were recruited from the DM-Scope registry of the neuromuscular clinic in the Saguenay-Lac-St-Jean region of the province of Québec, Canada. Stool samples from these 35 patients, including 15 paired samples with family members living with them as controls, were collected. Subsequently, these samples were sequenced by 16S MiSeq and were analyzed with DADA2 to generate taxonomic signatures. Our analysis revealed that the DM1 status correlated with changes in gut bacterial community. Notably, there were differences in the relative abundance of Bacteroidota, Euryarchaeota, Fusobacteriota, and Cyanobacteria Phyla compared to healthy controls. However, no significant shift in gut microbiome community structure was observed between DM1 phenotypes. These findings provide valuable insights into how the gut bacterial community, in conjunction with biomechanical factors, could potentially influence the gastrointestinal tract of DM1 patients.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Fisette-Paul Hus
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Élise Duchesne
- Physiotherapy teaching unit, Université du Québec à Chicoutimi, Chicoutimi, G7H 2B1, Canada
| | - Nicolas Dumont
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Valérie Gagné-Ouellet
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Cynthia Gagnon
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
2
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
4
|
De Antonio M, Dogan C, Daidj F, Eymard B, Puymirat J, Mathieu J, Gagnon C, Katsahian S, Hamroun D, Bassez G. The DM-scope registry: a rare disease innovative framework bridging the gap between research and medical care. Orphanet J Rare Dis 2019; 14:122. [PMID: 31159885 PMCID: PMC6547518 DOI: 10.1186/s13023-019-1088-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relevance of registries as a key component for developing clinical research for rare diseases (RD) and improving patient care has been acknowledged by most stakeholders. As recent studies pointed to several limitations of RD registries our challenge was (1) to improve standardization and data comparability; (2) to facilitate interoperability between existing RD registries; (3) to limit the amount of incomplete data; (4) to improve data quality. This report describes the innovative concept of the DM-Scope Registry that was developed to achieve these objectives for Myotonic Dystrophy (DM), a prototypical example of highly heterogeneous RD. By the setting up of an integrated platform attractive for practitioners use, we aimed to promote DM epidemiology, clinical research and patients care management simultaneously. RESULTS The DM-Scope Registry is a result of the collaboration within the French excellence network established by the National plan for RDs. Inclusion criteria is all genetically confirmed DM individuals, independently of disease age of onset. The dataset includes social-demographic data, clinical features, genotype, and biomaterial data, and is adjustable for clinical trial data collection. To date, the registry has a nationwide coverage, composed of 55 neuromuscular centres, encompassing the whole disease clinical and genetic spectrum. This widely used platform gathers almost 3000 DM patients (DM1 n = 2828, DM2 n = 142), both children (n = 322) and adults (n = 2648), which accounts for > 20% of overall registered DM patients internationally. The registry supported 10 research studies of various type i.e. observational, basic science studies and patient recruitment for clinical trials. CONCLUSION The DM-Scope registry represents the largest collection of standardized data for the DM population. Our concept improved collaboration among health care professionals by providing annual follow-up of quality longitudinal data collection. The combination of clinical features and biomolecular materials provides a comprehensive view of the disease in a given population. DM-Scope registry proves to be a powerful device for promoting both research and medical care that is suitable to other countries. In the context of emerging therapies, such integrated platform contributes to the standardisation of international DM research and for the design of multicentre clinical trials. Finally, this valuable model is applicable to other RDs.
Collapse
Affiliation(s)
- Marie De Antonio
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
| | - Céline Dogan
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ferroudja Daidj
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Bruno Eymard
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), CIUSSS du Saguenay-Lac-St-Jean, Québec, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), CIUSSS du Saguenay-Lac-St-Jean, Québec, Canada
- Centre de recherche Charles-Le-Moyne-Saguenay-Lac-St-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Sandrine Katsahian
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- Unit of Epidemiology and Clinical Research, AP-HP, Georges-Pompidou Hospital, Paris, France
| | - Dalil Hamroun
- University Institute of Clinical Research, CHU, Montpellier, France
| | - Guillaume Bassez
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM, Research Center in Myology, Sorbonne University, Paris, France
| |
Collapse
|
5
|
Analysis of mutational dynamics at the DMPK (CTG)n locus identifies saliva as a suitable DNA sample source for genetic analysis in myotonic dystrophy type 1. PLoS One 2019; 14:e0216407. [PMID: 31048891 PMCID: PMC6497304 DOI: 10.1371/journal.pone.0216407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genotype-to-phenotype correlation studies in myotonic dystrophy type 1 (DM1) have been confounded by the age-dependent, tissue-specific and expansion-biased features of somatic mosaicism of the expanded CTG repeat. Previously, we showed that by controlling for the confounding effects of somatic instability to estimate the progenitor allele CTG length in blood DNA, age at onset correlations could be significantly improved. To determine the suitability of saliva DNA as a source for genotyping, we used small pool-PCR to perform a detailed quantitative study of the somatic mutational dynamics of the CTG repeat in saliva and blood DNA from 40 DM1 patients. Notably, the modal allele length in saliva was only moderately higher in saliva and not as large as previously observed in most other tissues. The lower boundary of the allele distribution was also slightly higher in saliva than it was in blood DNA. However, the progenitor allele length estimated in blood explained more of the variation in age at onset than that estimated from saliva. Interestingly, although the modal allele length was slightly higher in saliva, the overall degree of somatic variation was typically lower than in blood DNA, revealing new insights into the tissue-specific dynamics of somatic mosaicism. These data indicate that saliva constitutes an accessible, non-invasive and suitable DNA sample source for performing genetic studies in DM1.
Collapse
|
6
|
Cumming SA, Hamilton MJ, Robb Y, Gregory H, McWilliam C, Cooper A, Adam B, McGhie J, Hamilton G, Herzyk P, Tschannen MR, Worthey E, Petty R, Ballantyne B, Warner J, Farrugia ME, Longman C, Monckton DG. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018; 26:1635-1647. [PMID: 29967337 PMCID: PMC6189127 DOI: 10.1038/s41431-018-0156-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3'-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3'-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.
Collapse
Affiliation(s)
- Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark J Hamilton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| | - Yvonne Robb
- Clinical Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Helen Gregory
- Department of Clinical Genetics, Aberdeen Royal Hospital, Aberdeen, AB25 2ZA, UK
| | | | - Anneli Cooper
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Berit Adam
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Josephine McGhie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Graham Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Pawel Herzyk
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michael R Tschannen
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth Worthey
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, NW, Huntsville, AL, 35806, USA
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Jon Warner
- Molecular Genetics Service, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Kumar A, Agarwal S, Pradhan S. Molecular and clinical spectrum of type 1 myotonic dystrophy. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Jiménez-Moreno A, Raaphorst J, Babačić H, Wood L, van Engelen B, Lochmüller H, Schoser B, Wenninger S. Falls and resulting fractures in Myotonic Dystrophy: Results from a multinational retrospective survey. Neuromuscul Disord 2018; 28:229-235. [DOI: 10.1016/j.nmd.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
9
|
DiPaolo G, Jimenez-Moreno C, Nikolenko N, Atalaia A, Monckton DG, Guglieri M, Lochmüller H. Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA). J Neurol 2017; 264:701-708. [PMID: 28168524 PMCID: PMC5374179 DOI: 10.1007/s00415-017-8399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/04/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is not characterised by ataxia per se; however, DM1 and ataxia patients show similar disturbances in movement coordination often experiencing walking and balance difficulties, although caused by different underlying pathologies. This study aims to investigate the use of a scale previously described for the assessment and rating of ataxia (SARA) with the hypothesis that it could have utility in DM1 patients as a measure of disease severity and risk of falling. Data from 54 DM1 patients were pulled from the PHENO-DM1 natural history study for analysis. Mean SARA score in the DM1 population was 5.45 relative to the maximum score of eight. A flooring effect (score 0) was observed in mild cases within the sample. Inter-rater and test-retest reliability was high with intraclass coefficients (ICC) of 0.983 and 1.00, respectively. Internal consistency was acceptable as indicated by a Cronbach's alpha of 0.761. Component analysis revealed two principle components. SARA correlated with: (1) all measures of muscle function tested, including quantitative muscle testing of ankle dorsiflexion (r = -0.584*), the 6 min walk test (r = -0.739*), 10 m walk test (r = 0.741*), and the nine hole peg test (r = 0.602*) and (2) measures of disease severity/burden, such as MIRS (r = 0.718*), MDHI (r = 0.483*), and DM1-Activ (r = -0.749*) (*p < 0.001). The SARA score was predicted by an interaction between modal CTG repeat length and age at sampling (r = 0.678, p = 0.003). A score of eight or above predicted the use of a walking aid with a sensitivity of 100% and a specificity of 85.7%. We suggest that further research is warranted to ascertain whether SARA or components of SARA are useful outcome measures for clinical trials in DM1. As a tool, it can be used for gathering information about disease severity/burden and helping to identify patients in need of a walking aid, and can potentially be applied in both research and healthcare settings.
Collapse
Affiliation(s)
- Giovanni DiPaolo
- Keel University School of Medicine, Stoke-on-Trent, UK
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Cecilia Jimenez-Moreno
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Antonio Atalaia
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
De Antonio M, Dogan C, Hamroun D, Mati M, Zerrouki S, Eymard B, Katsahian S, Bassez G. Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev Neurol (Paris) 2016; 172:572-580. [DOI: 10.1016/j.neurol.2016.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
11
|
Dogan C, De Antonio M, Hamroun D, Varet H, Fabbro M, Rougier F, Amarof K, Arne Bes MC, Bedat-Millet AL, Behin A, Bellance R, Bouhour F, Boutte C, Boyer F, Campana-Salort E, Chapon F, Cintas P, Desnuelle C, Deschamps R, Drouin-Garraud V, Ferrer X, Gervais-Bernard H, Ghorab K, Laforet P, Magot A, Magy L, Menard D, Minot MC, Nadaj-Pakleza A, Pellieux S, Pereon Y, Preudhomme M, Pouget J, Sacconi S, Sole G, Stojkovich T, Tiffreau V, Urtizberea A, Vial C, Zagnoli F, Caranhac G, Bourlier C, Riviere G, Geille A, Gherardi RK, Eymard B, Puymirat J, Katsahian S, Bassez G. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study. PLoS One 2016; 11:e0148264. [PMID: 26849574 PMCID: PMC4744025 DOI: 10.1371/journal.pone.0148264] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. Methods We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Results Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Conclusion Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials.
Collapse
Affiliation(s)
- Celine Dogan
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Marie De Antonio
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
- INSERM U1138, Centre de recherche des cordeliers, Paris Descartes university, UPMC university, Paris, France
| | - Dalil Hamroun
- Direction de la Recherche et de l'Innovation, CHU Montpellier, Montpellier, France
| | - Hugo Varet
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Marianne Fabbro
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Felix Rougier
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Khadija Amarof
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | | | - Anthony Behin
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Remi Bellance
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | - Celia Boutte
- Neuromuscular Reference Center, CHU Grenoble, Grenoble, France
| | - François Boyer
- Neuromuscular Reference Center, CHU Reims, Reims, France
| | | | | | - Pascal Cintas
- Neuromuscular Reference Center, CHU Toulouse, Toulouse, France
| | | | - Romain Deschamps
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | - Xavier Ferrer
- Neuromuscular Reference Center, CHU Bordeaux, Bordeaux, France
| | | | - Karima Ghorab
- Neuromuscular Reference Center, CHU Limoges, Limoges, France
| | - Pascal Laforet
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Armelle Magot
- Neuromuscular Reference Center, CHU Nantes, Nantes, France
| | - Laurent Magy
- Neuromuscular Reference Center, CHU Limoges, Limoges, France
| | | | | | | | | | - Yann Pereon
- Neuromuscular Reference Center, CHU Nantes, Nantes, France
| | | | - Jean Pouget
- Neuromuscular Reference Center, GH Timone, AP-HM, Marseille, France
| | | | - Guilhem Sole
- Neuromuscular Reference Center, CHU Bordeaux, Bordeaux, France
| | - Tanya Stojkovich
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Andoni Urtizberea
- Neuromuscular Reference Center, Hôpital Marin, AP-HP, Hendaye, France
| | | | - Fabien Zagnoli
- Neuromuscular Competence Center, HIA Clermont-Tonnerre, Brest, France
| | | | | | | | - Alain Geille
- CoPil, DM1 patients group, AFM-Téléthon, Evry, France
| | - Romain K. Gherardi
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Bruno Eymard
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jack Puymirat
- Human Genetic Research Unit, CHU Laval, Quebec, Canada
| | - Sandrine Katsahian
- INSERM U1138, Centre de recherche des cordeliers, Paris Descartes university, UPMC university, Paris, France
| | - Guillaume Bassez
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
- * E-mail:
| |
Collapse
|
12
|
Correlation between distribution of muscle weakness, electrophysiological findings and CTG expansion in myotonic dystrophy. J Clin Neurosci 2013; 21:1123-6. [PMID: 24417793 DOI: 10.1016/j.jocn.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 11/22/2022]
Abstract
Myotonic dystrophy type 1 (DM-1) is a multi-system disorder affecting the muscles, brain, cardiovascular system, endocrine system, eyes and skin. Diagnosis is made by clinical, electrodiagnostic and genetic studies. This study aimed to determine the correlation between CTG expansion and distribution of muscle weakness and clinical and electrophysiological findings. Genetically confirmed DM-1 patients presenting to Shariati Hospital between 2005 and 2011 were included in this study. Clinical, electrodiagnostic and genetic testing was performed and the correlation between CTG expansion and distribution of muscle weakness and clinical and electromyographic findings was studied. Thirty-three genetically confirmed DM-1 patients were enrolled. Myotonia, bifacial weakness and distal upper limb weakness were seen in all patients. Diabetes mellitus was found in one patient (3%), cardiac disturbance in eight (24.2%), cataracts in eight (24.2%), hypogonadism in five (15.2%), frontal baldness in 13 (39.4%), temporalis wasting in 14 (42.4%), temporomandibular joint disorder in seven (21.2%) and mental retardation in eight (24.2%). The mean number of CTG repeats, measured by Southern blot, was 8780 (range 500-15,833). A negative correlation was found between CTG expansion and age of onset. Temporalis wasting and mental retardation were positively correlated with CTG expansion. No relationship was found between weakness distribution, electromyographic findings, other systemic features and CTG expansion. In this study of DM-1 in Iran, we found a correlation between CTG expansion and age of onset, temporalis wasting and mental disability. No correlation between CTG expansion and electrodiagnostic and other clinical findings were detected.
Collapse
|
13
|
Park KM, Shin KJ, Kim SE, Park J, Ha SY, Kim BJ. Prolonged Corrected QT Interval in Patients with Myotonic Dystrophy Type 1. J Clin Neurol 2013; 9:186-91. [PMID: 23894242 PMCID: PMC3722470 DOI: 10.3988/jcn.2013.9.3.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Sudden cardiac death is one of the leading causes of death in patients with myotonic dystrophy type 1 (DM1). It has been proposed that a prolonged QT interval is associated with sudden cardiac death in several neurological diseases, including multiple system atrophy, idiopathic Parkinson's disease, and diabetic autonomic neuropathy. However, analyses of the corrected QT (QTc) interval in DM1 patients are rare in the literature. The purposes of this study were to determine the association between the QT interval and DM1, and the affecting factors. METHODS Thirty-nine patients diagnosed with DM1 through genetic testing were enrolled. The QTc interval (calculated using Bazett's formula: QTc=QT/√RR) was compared between these patients and 39 normal healthy controls. The clinical and laboratory factors affecting QTc interval in the patient group were investigated. RESULTS The QTc interval was significantly longer in the DM1 group (411.2±44.7 msec, mean±SD) than in the normal control group (355.6±20.6 msec). Intragroup analysis revealed that a prolonged QTc interval in DM1 patients was associated with being female and older, having a longer disease duration, and exhibiting abnormal electrocardiography findings. CONCLUSIONS The higher incidence of sudden cardiac death in the DM1 population is associated with the observed prolonged QTc interval in those patients.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Panaite PA, Kuntzer T, Gourdon G, Barakat-Walter I. Respiratory failure in a mouse model of myotonic dystrophy does not correlate with the CTG repeat length. Respir Physiol Neurobiol 2013; 189:22-6. [PMID: 23811192 DOI: 10.1016/j.resp.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Collapse
|
15
|
Panaite PA, Kuntzer T, Gourdon G, Lobrinus JA, Barakat-Walter I. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech 2012. [PMID: 23180777 PMCID: PMC3634646 DOI: 10.1242/dmm.010512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Collapse
|
16
|
Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2011; 97:173-89. [PMID: 22079416 DOI: 10.1016/j.pneurobio.2011.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/06/2011] [Accepted: 10/27/2011] [Indexed: 02/09/2023]
Abstract
The expression, processing, transport and activities of both coding and non-coding RNAs play critical roles in normal neuronal function and differentiation. Over the past decade, these same pathways have come under scrutiny as potential contributors to neurodegenerative disease. Here we focus broadly on the roles of RNA and RNA processing in neurodegeneration. We first discuss a set of "RNAopathies", where non-coding repeat expansions drive pathogenesis through a surprisingly diverse set of mechanisms. We next explore an emerging class of "RNA binding proteinopathies" where redistribution and aggregation of the RNA binding proteins TDP-43 or FUS contribute to a potentially broad range of neurodegenerative disorders. Lastly, we delve into the potential contributions of alterations in both short and long non-coding RNAs to neurodegenerative illness.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
17
|
Peripheral neuropathy is linked to a severe form of myotonic dystrophy in transgenic mice. J Neuropathol Exp Neurol 2011; 70:678-85. [PMID: 21760538 DOI: 10.1097/nen.0b013e3182260939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder with a variable phenotype. The involvement of peripheral nerves in DM1 disease is controversial. The DM1 animal model DM300 transgenic mice that carry 350 to 500 CTG repeats express a mild DM1 phenotype but do not exhibit motor or sensory pathology. Here, we investigated the presence or absence of peripheral neuropathy in transgenic mice (DMSXL) that carry more than 1,300 CTG repeats and display a severe form of DM1. Electrophysiologic, histologic, and morphometric methods were used to investigate the structure and function of peripheral nerves. We observed lower compound muscle action potentials recorded from hind limb muscles and slowing of sciatic nerve conduction velocity in DMSXL versus control mice. Morphometric analyses showed an axonopathy and neuronopathy in the DMSXL mice characterized by a decrease in numbers of myelinated motor axons in sciatic nerve and in spinal cord motor neurons. Pathologic alterations in the structure of hind limb neuromuscular junctions were also detected in the DMSXL mice. These results suggest that peripheral neuropathy can be linked to a large CTG expansion and a severe form of DM1.
Collapse
|
18
|
Groh WJ, Groh MR, Shen C, Monckton DG, Bodkin CL, Pascuzzi RM. Survival and CTG repeat expansion in adults with myotonic dystrophy type 1. Muscle Nerve 2011; 43:648-51. [DOI: 10.1002/mus.21934] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Catalli C, Morgante A, Iraci R, Rinaldi F, Botta A, Novelli G. Validation of sensitivity and specificity of tetraplet-primed PCR (TP-PCR) in the molecular diagnosis of myotonic dystrophy type 2 (DM2). J Mol Diagn 2010; 12:601-6. [PMID: 20616365 DOI: 10.2353/jmoldx.2010.090239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2, OMIM #602688) is a multisystemic hereditary degenerative disease caused by a tetranucleotide CCTG expansion in the ZNF9 gene. Routine testing strategies for DM2 require the use of Southern blot or long-range PCR, but the presence of very large expansions and wide somatic mosaicism greatly reduce the sensitivity of these reference techniques. We therefore developed and validated a tetraplet-primed PCR (TP-PCR) method to detect the DM2 mutation by testing 87 DM2-positive and 76 DM2-negative previously characterized patients. The specificity of this technique was evaluated including DNA samples from 39 DM1-positive patients. We then attempted a prospective analysis of 50 patients with unknown genotype who referred to our center for diagnostic or presymptomatic tests. Results show that TP-PCR is a fast, reliable, and flexible technique, whose specificity and sensitivity is almost 100%, with no false positive or negative results either in retrospective and prospective applications. We therefore conclude that using this technique, in combination with the short-range PCR, is sufficient to correctly establish the presence or the absence of ZNF9 expanded alleles in the molecular diagnosis of DM2.
Collapse
Affiliation(s)
- Claudio Catalli
- Department of Biopathology and Diagnosing Imaging, Tor Vergata University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Hermans MCE, Faber CG, De Baets MH, de Die-Smulders CEM, Merkies ISJ. Rasch-built myotonic dystrophy type 1 activity and participation scale (DM1-Activ). Neuromuscul Disord 2010; 20:310-8. [PMID: 20363134 DOI: 10.1016/j.nmd.2010.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/15/2010] [Accepted: 03/05/2010] [Indexed: 11/19/2022]
Abstract
We describe the development of an outcome measure of activity and participation for patients with myotonic dystrophy type 1 using the Rasch measurement model. A 49-item questionnaire was completed by 163 DM1 patients. Data were subsequently analyzed with Rasch software to design the item set to fit model expectations. Through systematic investigation of response category ordering, model fit, item bias, and local response dependency, we succeeded in constructing a 20-item unidimensional scale of activity and participation (DM1-Activ). High internal consistency (PSI=0.95) and good test-retest reliability values of item difficulty hierarchy and patient location were demonstrated. Patient measures had acceptable correlations with MRC sum scores and MIRS grades (ICC=0.69 and 0.71, respectively), indicating good external construct validity. DM1-Activ is a practical, reliable and valid outcome measure that fulfils all clinimetric requirements. Further evaluation of this scale is needed to provide a nomogram for clinical use.
Collapse
Affiliation(s)
- Mieke C E Hermans
- Department of Neurology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Sistiaga A, Urreta I, Jodar M, Cobo AM, Emparanza J, Otaegui D, Poza JJ, Merino JJ, Imaz H, Martí-Massó JF, López de Munain A. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol Med 2010; 40:487-495. [PMID: 19627641 DOI: 10.1017/s0033291709990602] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although central nervous system (CNS) involvement in adult myotonic dystrophy type 1 (DM1) was described long ago, the large number of variables affecting the cognitive and personality profile have made it difficult to determine the effect of DM1 on the brain. The aim of this study was to define the cognitive and personality patterns in adult DM1 patients, and to analyse the relationship between these clinical patterns and their association with the underlying molecular defect. METHOD We examined 121 adult DM1 patients with confirmed molecular CTG repeat expansion and 54 control subjects using comprehensive neuropsychological tests and personality assessments with the Millon Clinical Multiaxial Inventory (MCMI)-II. We used a multiple linear regression model to assess the effect of each variable on cognition and personality adjusted to the remainders. RESULTS Patients performed significantly worse than controls in tests measuring executive function (principally cognitive inflexibility) and visuoconstructive ability. In the personality profile, some paranoid and aggressive traits were predominant. Furthermore, there was a significant negative correlation between the CTG expansion size and many of the neuropsychological and personality measures. The molecular defect also correlated with patients' daytime somnolence. CONCLUSIONS Besides muscular symptomatology, there is significant CTG-dependent involvement of the CNS in adult DM1 patients. Our data indicate that the cognitive impairment predominantly affects the fronto-parietal lobe.
Collapse
Affiliation(s)
- A Sistiaga
- Experimental Unit, Hospital Donostia, San Sebastian, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bae JS, Kim OK, Kim SJ, Kim BJ. Abnormalities of nerve conduction studies in myotonic dystrophy type 1: Primary involvement of nerves or incidental coexistence? J Clin Neurosci 2008; 15:1120-4. [DOI: 10.1016/j.jocn.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 10/24/2007] [Accepted: 11/06/2007] [Indexed: 11/29/2022]
|
23
|
Gharehbaghi-Schneli EB, Finsterei J, Korschineck I, Mamoli B, Binder BR. Genotype -phenotype correlation in myotonic dystrophy. Clin Genet 2008. [DOI: 10.1111/j.1399-0004.1998.tb02576.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kuo HC, Hsieh YC, Wang HM, Chuang WL, Huang CC. Correlation among subcortical white matter lesions, intelligence and CTG repeat expansion in classic myotonic dystrophy type 1. Acta Neurol Scand 2008; 117:101-7. [PMID: 18184345 DOI: 10.1111/j.1600-0404.2007.00911.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To analyze the correlation among intelligence, brain magnetic resonance images (MRI) and genotype in classic myotonic dystrophy type 1 (DM1) patients. MATERIALS AND METHODS Seventeen patients with classic DM1 were administered intelligence and neuropsychological tests and brain MRI focusing on a semi-quantitative rating scale of subcortical white matter lesions (WMLs). Statistical analysis was measured to evaluate the correlation among clinical manifestations, intelligence, brain MRI abnormalities, and CTG repeat expansion. RESULTS There were statistically significant correlations between intelligence test and insular WMLs for all DM1 patients and between intelligence quotient and temporal WMLs for those patients with less than 400 of the CTG repeat size. We also documented that temporal WMLs were related to the disease course, and frontal WMLs were correlated with aging in all DM1 patients. However, a poor correlation was found among CTG repeat size and clinical pictures, neuropsychological impairments, and brain MRI abnormalities in all DM1 patients. CONCLUSION These results suggest that subcortical WMLs are correlated with focal dementia in classic DM1 patients. Temporal and insular WMLs may be responsible for the global intellectual dysfunction of adult DM1 patients.
Collapse
Affiliation(s)
- H-C Kuo
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Boërio D, Hogrel JY, Bassez G, Lefaucheur JP. Neuromuscular excitability properties in myotonic dystrophy type 1. Clin Neurophysiol 2007; 118:2375-82. [PMID: 17890147 DOI: 10.1016/j.clinph.2007.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/05/2007] [Accepted: 07/28/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study neuromuscular excitability in patients with dystrophia myotonica type 1 (DM1). METHODS The neuromuscular recovery cycle following motor nerve stimulation was assessed in 16 DM1 patients who had no sign of peripheral neuropathy or diabetes. Compound muscle action potentials were recorded from the adductor digiti minimi muscle to ulnar nerve stimulation at the wrist. Paired pulses were delivered, consisting of a conditioning stimulus of supramaximal intensity, followed by a submaximal test stimulus. Interstimuli intervals (ISIs) ranged between 1 and 8ms. Durations of the absolute and relative refractory periods (ARP, RRP) and percentages of refractoriness and supernormality at ISIs of 2.6 and 7ms, respectively, were computed using a subtraction method. The results obtained in the series of DM1 patients were compared to those obtained in six patients with other forms of myotonia and to normative values established in a series of age-matched healthy subjects. Correlations were made between excitability parameters, the number of cytosine-thymine-guanine (CTG) repeats, and the severity of myotonia, scored clinically. RESULTS Compared to controls, DM1 patients presented prolonged durations of ARP and RRP, increased refractoriness and reduced supernormality. The decrease in refractoriness correlated with both the number of CTG repeats and the severity of myotonia. CONCLUSIONS Changes in the recovery cycle following supramaximal motor nerve stimulation revealed the existence of subtle alterations of neuromuscular excitability in DM1 patients. SIGNIFICANCE Increase in refractoriness together with a reduced supernormality was consistent with a process of membrane depolarization. Such a depolarization may be related to the loss of chloride channels or to alterations in sodium conductance in the motor axon or the muscle fiber.
Collapse
Affiliation(s)
- Delphine Boërio
- Service de Physiologie--Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique--Hôpitaux de Paris, Créteil, France
| | | | | | | |
Collapse
|
26
|
Acton RT, Rivers CA, Watson B, Oh SJ. DMPK-associated myotonic dystrophy and CTG repeats in Alabama African Americans. Clin Genet 2007; 72:448-53. [PMID: 17877752 DOI: 10.1111/j.1399-0004.2007.00883.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a result of a CTG expansion in the 3'-untranslated region of the DMPK gene. DM1 is rare among African blacks who have fewer large CTG repeats in the normal range than other racial/ethnic groups. Neither the prevalence of DM1 nor the relationship of CTG expansion to clinical status in African Americans (AAs) is well documented. We describe two AA brothers with DM1, each of whom had CTG repeats of 5/639; their father was reported to have DM1 and had CTG repeats of 5/60. Other family members had CTG repeats of 5-14. An unrelated AA patient from a second kinship also had DM1; an analysis revealed CTG repeats of 27/191. In 161 Alabama AA control subjects, we observed 18 CTG alleles from 5 to 28 repeats; the most common allele had five CTG repeats. The frequency of CTG repeats >or=15 were greater (p < 0.0003) in Pygmy, Amhara Ethiopian, Ashkenazi Jewish, North African Jewish, Israeli Muslim Arab, European white, and Japanese populations than in the Alabama AA population. These data suggest that the risk for DM1 in AAs is intermediate between that of African blacks and whites of European descent.
Collapse
Affiliation(s)
- R T Acton
- Department of Microbiology, University of Alabama, Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
27
|
Salehi LB, Bonifazi E, Stasio ED, Gennarelli M, Botta A, Vallo L, Iraci R, Massa R, Antonini G, Angelini C, Novelli G. Risk Prediction for Clinical Phenotype in Myotonic Dystrophy Type 1: Data from 2,650 Patients. ACTA ACUST UNITED AC 2007; 11:84-90. [PMID: 17394397 DOI: 10.1089/gte.2006.0511] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder that affects skeletal and smooth muscle as well as the eye, heart, endocrine system, and central nervous system. DM1 is caused by expansion of a CTG trinucleotidedaggerrepeat in the gene DMPK. Clinical findings in DM1 span a continuum from mild to severe. Although the CTG repeat correlates with the disease phenotype, caution is used in predicting disease severity on the basis of CTG repeat number. This study reports an extensive genotype-phenotype study to evaluate the clinical validity and clinical utility of the molecular genetic test. Data were analyzed by multiple logistic regression, used to estimate the odds ratio (OR) and correlation coefficients for patients phenotype in respect to the categorical variables expansion class, gender, familiarity, and the continuous variables age and disease duration. We assessed disease expression by clinical evaluation and the molecular genetic test in 2,650 patients identified by accurate clinical diagnosis and family segregation. We were able to estimate OR and correlation coefficients for patients phenotype according to CTG number. A genotype-phenotype correlation was established to derivate a clinical predictive risk on the basis of molecular data. This study demonstrates that measurement of triplet expansions in patients' DNA can be considered as a useful tool for DM1 phenotype assessment and presymptomatic testing.
Collapse
|
28
|
Abstract
Tauopathies: A Distinct Class of Neurodegenerative DiseasesNeurodegenerative diseases are characterized by neuronal loss and intraneuronal accumulation of fibrillary materials, of which, neurofibrillary tangles (NFT) are the most common. Neurofibrillary tangles also occur in normal aging and contain the hyperphosphorylated microtubule-associated protein tau. A detailed presentation is made of the molecular bases of Alzheimer's disease (AD), postencephalitic parkinsonism, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of Guam, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick's disease, frontotemporal dementia (FTD), Down's syndrome, myotonic dystrophy (DM) and Niemann-Pick Type C (NPC) disease, which are considered to be common tauopathies. The unique human tau gene extends over 100 kb of the long arm of chromosome 17 and contains 16 exons. The human brain contains six tau isoforms that contain from 352 to 441 amino acids. To date, 34 pathogenic tau mutations have been described among 101 families affected by FTD with parkinsonism linked to chromosome 17 (FTDP-17). These mutations may involve alternative splicing of exon 10 that lead to changes in the proportion of 4-repeat- and 3-repeat-tau isoforms, or may modify tau interactions with microtubules. Tau aggregates differ in degree of phosphorylation and in content of tau isoforms. Five classes of tauopathies have been defined depending on the type of tau aggregates. The key event in tauopathies is the disorganization of the cytoskeleton, which is based on mutations/polymorphisms in the tau gene and lead to nerve cell degeneration. In this review, tauopathies as a distinct class of neurodegenerative diseases are discussed with emphasis on their molecular pathology and genetics.
Collapse
|
29
|
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are similar yet distinct autosomal-dominant disorders characterized by muscle weakness, myotonia, cataracts, and multiple organ involvement, including the brain. One key difference between DM1 and DM2 is that a congenital form has been described for DM1 only. Expression of RNA transcripts containing pathogenic repeat lengths produces defects in alternative splicing of multiple RNAs, sequesters specific repeat-binding proteins, and ultimately leads to developmentally inappropriate splice products for a particular tissue. Whether brain pathology in its entirety in adult DM1 and DM2 is caused by interference in RNA processing remains to be determined. This review focuses on the similarities and differences between DM1 and DM2 with respect to neuropsychological, neuropathological, and neuroimaging data relating to cerebral involvement, with special emphasis on the clinical relevance and social consequences of such involvement.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, University of Milan, IRCCS Policlinico San Donato, San Donato Hospital, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy.
| | | |
Collapse
|
30
|
Laberge L, Veillette S, Mathieu J, Auclair J, Perron M. The correlation of CTG repeat length with material and social deprivation in myotonic dystrophy. Clin Genet 2006; 71:59-66. [PMID: 17204048 DOI: 10.1111/j.1399-0004.2007.00732.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Socioeconomic deprivation has long been recognized as a prominent feature of myotonic dystrophy type 1 (DM1), but studies performed before the discovery of the mutation causing DM1 may have suffered an ascertainment bias towards the more severe forms of the disease. We have sought to clarify the relationship between CTG repeats, muscular impairment, and socioeconomic characteristics of 200 patients with DM1. Patients with DM1 reported lower educational attainment, lower employment rate, lower family income, and higher reliance on social assistance than the reference population. Logistic regression showed, on one hand, that CTG repeats and marital status were significant predictors of social assistance recipiency and, on the other hand, that CTG repeats and gender were significant predictors of low social support from family, after adjustment for age, gender, degree of muscular impairment, CTG repeats, educational level, and marital status. For example, each additional 100 CTG repeats was found to increase the odds of relying on social assistance by about 35% and having low social support by about 22%. The chances of experiencing socioeconomic deprivation are loaded heavily against patients with DM1. The relationship between increased CTG repeat length and higher risk of material and social deprivation must be acknowledged in the clinical management of DM1.
Collapse
Affiliation(s)
- L Laberge
- Groupe ECOBES, Cégep de Jonquière, Université du Québec, à Chicoutimi, Québec, Canada
| | | | | | | | | |
Collapse
|
31
|
Winblad S, Lindberg C, Hansen S. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1). Behav Brain Funct 2006; 2:16. [PMID: 16696870 PMCID: PMC1475858 DOI: 10.1186/1744-9081-2-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/15/2006] [Indexed: 11/25/2022] Open
Abstract
Background This study was designed to investigate cognitive abilities and their correlations with CTG repeat expansion size in classical Myotonic dystrophy type 1 (DM1), given that earlier studies have indicated cognitive deficits, possibly correlating with blood CTG repeats expansion size. Methods A measurement of CTG repeat expansion in lymphocytes and an extensive neuropsychological examination was made in 47 patients (25 women and 22 men). Individual results in the examination were compared with normative data. Results A substantial proportion of patients with DM1 (> 40%) scored worse in comparison to normative collectives on tests measuring executive, arithmetic, attention, speed and visuospatial abilities. We found significant correlations between longer CTG repeat expansion size and lower results on most tests associated with these abilities. Furthermore, the association between executive (frontal) deficits and DM1 were strengthened when considering both test results and correlations with CTG repeat expansion size in lymphocytes. Conclusion This study showed deficits in several cognitive abilities when patients with DM1 are compared to normative collectives. Some of the neuropsychological tests associated with these abilities are correlated to CTG repeat expansion size in blood. These data highlight the importance of considering cognitive deficits when seeing patients with classical DM1 in clinical practice, but also the utility of using blood CTG repeat expansion size as a broad predictor of finding cognitive deficit in DM1.
Collapse
Affiliation(s)
- Stefan Winblad
- Department of Psychology, Göteborg University, Göteborg, Sweden
- Neuromuscular Center, Department of Neurology, Sahlgrenska University Hospital, Mölndal, Sweden
- Unit for Neuropsychology and Neuropsychiatry, Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Christopher Lindberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
- Neuromuscular Center, Department of Neurology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Stefan Hansen
- Department of Psychology, Göteborg University, Göteborg, Sweden
| |
Collapse
|
32
|
Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Dysregulation of protein phosphorylation/dephosphorylation in Alzheimer's disease: a therapeutic target. J Biomed Biotechnol 2006; 2006:31825. [PMID: 17047304 PMCID: PMC1559914 DOI: 10.1155/jbb/2006/31825] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/12/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022] Open
Abstract
Studies during the last two decades have provided new insights into the molecular mechanism of Alzheimer's disease (AD). One of the milestone findings in AD research was the demonstration that neurofibrillary degeneration characterized by tau pathology is central to the pathogenesis of AD and other tauopathies and that abnormal hyperphosphorylation of tau is pivotal to neurofibrillary degeneration. This article reviews the recent research advances in tau pathology and the underlying dysregulation of the protein phosphorylation/dephosphorylation system. An updated model of the mechanism of neurofibrillary degeneration is also presented, and a promising therapeutic target to treat AD by correcting dysregulation of protein phosphorylation/dephosphorylation is discussed.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, New York State
Institute for Basic Research in Developmental Disabilities, 1050
Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Fei Liu
- Department of Neurochemistry, New York State
Institute for Basic Research in Developmental Disabilities, 1050
Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Inge Grundke-Iqbal
- Department of Neurochemistry, New York State
Institute for Basic Research in Developmental Disabilities, 1050
Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State
Institute for Basic Research in Developmental Disabilities, 1050
Forest Hill Road, Staten Island, NY 10314-6399, USA
| |
Collapse
|
33
|
Kuo HC, Hsiao KM, Chen CJ, Hsieh YC, Huang CC. Brain magnetic resonance image changes in a family with congenital and classic myotonic dystrophy. Brain Dev 2005; 27:291-6. [PMID: 15862193 DOI: 10.1016/j.braindev.2004.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/07/2004] [Accepted: 09/10/2004] [Indexed: 12/15/2022]
Abstract
We present the clinical manifestations, brain magnetic resonance images (MRI), and genetic analysis of a family with 2 siblings with congenital myotonic dystrophy type 1 (DM1) and 4 patients with classic DM1. These 2 patients with congenital DM1 had severe mental retardation and a characteristic feature of hyperintensity of white matter at the posterior-superior trigone (HWMPST), in addition to ventricular dilatation in T2-weighted images (T2WI) of brain MRI. In 2 of the 4 classic DM1 patients, brain T2WI MRI showed hyperintensity lesions in the bilateral frontal and/or temporal regions, which were absent in congenital DM1. In conclusion, we suggest that the HWMPST in brain MRI is a characteristic finding in congenital DM1, and that the severe cognitive impairments are not only attributable to the subcortical white matter lesions. In congenital DM1, the cognitive function is a diffuse impairment, which is different from that in classic DM1.
Collapse
Affiliation(s)
- Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital and University, 199 Tung-Hwa North Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Groh WJ, Lowe MR, Simmons Z, Bhakta D, Pascuzzi RM. Familial clustering of muscular and cardiac involvement in myotonic dystrophy type 1. Muscle Nerve 2005; 31:719-24. [PMID: 15770673 DOI: 10.1002/mus.20310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is associated with both skeletal and cardiac muscle involvement. The aim of the present study was to determine whether familial clustering is observed in the severity of muscle involvement in DM1. We evaluated 51 sibling groups constituting 112 patients with genetically-verified DM1. The siblings were similar to each other in age, cytosine-thymine-guanine (CTG) repeat length, age at disease onset, muscular impairment rating score, and electrocardiographic markers of cardiac conduction disease. After adjusting for the similarities between siblings in age and CTG repeat length, the siblings remained similar to each other in measures of both skeletal and cardiac muscle involvement. These results suggest that factors other than CTG repeat length play a role in the severity and progression of the degenerative skeletal and cardiac muscle disease in DM1.
Collapse
Affiliation(s)
- William J Groh
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, 1800 North Capitol, Room E406, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
35
|
Angeard-Durand N, Héron D, Gargiulo M, Eymard B. Dystrophie myotonique de Steinert : approche génétique et cognitive. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.neurenf.2004.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Di Leo R, Rodolico C, De Gregorio C, Recupero A, Coglitore S, Annesi G, Toscano A, Messina C, Vita G. Cardiovascular autonomic control in myotonic dystrophy type 1: a correlative study with clinical and genetic data. Neuromuscul Disord 2004; 14:136-41. [PMID: 14733960 DOI: 10.1016/j.nmd.2003.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The autonomic nervous system has been evaluated in myotonic dystrophy with contradictory results and its relationship with heart disturbances remains unclear. Twenty-three patients with myotonic dystrophy type 1 were investigated by a battery of six cardiovascular autonomic tests and power spectral analysis of heart rate variability. Although 15 patients (65%) revealed abnormal or borderline results in some tests, only one patient had a definite autonomic damage, as indicated by two or more abnormal tests. As a group, myotonic dystrophy type 1 patients showed a significant reduction of heart rate variability during deep breathing (P < 0.0001). The exclusive involvement of parasympathetic tests suggests that a mild vagal dysfunction occurs in some myotonic dystrophy type 1 patients. The results indicate that such autonomic abnormalities are not: (1) part of a peripheral neuropathy; (2) related to cytosine-thymine-guanine repeat size or breathing pattern. Power spectral analysis showed a reduction of supine low-frequency band, which is, but not exclusively, a marker of sympathetic activity. It was inversely correlated to disease duration (P < 0.04), suggesting a progression as the disease advances. A low-frequency power, recorded after standing, was significantly associated (P < 0.02) with presence of heart involvement. Our findings suggest that a mixed, especially parasympathetic, autonomic dysfunction may occur in myotonic dystrophy type 1, although it is not a major finding. It could play a role in the occurrence of cardiac abnormalities, or increase the risk of sudden cardiovascular events.
Collapse
Affiliation(s)
- Rita Di Leo
- Department of Neurosciences, Psychiatry and Anaesthesiology, Clinica Neurologica 2, Policlinico Universitario, 98125 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arakawa K, Tomi H, Tobimatsu S, Kira JI. Middle latency auditory-evoked potentials in myotonic dystrophy: relation to the size of the CTG trinucleotide repeat and intelligent quotient. J Neurol Sci 2003; 207:31-6. [PMID: 12614928 DOI: 10.1016/s0022-510x(02)00354-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Major components of MLAEPs are thought to originate in the temporal lobe. Absence of the Pb potential has been demonstrated in MLAEPs in Alzheimer's disease and demented Parkinson's disease patients. To validate usefulness of middle latency auditory-evoked potentials (MLAEPs) in evaluating the central nervous system (CNS) involvement of myotonic dystrophy (MyD). METHODS MLAEPs were recorded in eight patients with MyD and nine normal control subjects. In the patient group, the size of the CTG triplet repeat expansion within the dystrophia myotonica protein kinase (DMPK) gene and the revised Wechsler Adult Intelligence Scale (WAIS-R) were also assessed. RESULTS The latency of the Nb potential showed a significant correlation with the size of the CTG repeat expansion (r=0.734, P=0.036). The Pb latency also tended to prolong according to CTG amplification (r=0.644, P=0.087). The amplitudes of Na and Pa significantly increased compared with those of normal control subjects (P=0.024 and 0.016, respectively). However, they did not correlate with IQ or CTG amplification. CONCLUSIONS Abnormal MLAEPs may indicate CNS involvement in MyD. Although the precise generating mechanisms of Nb are unclear, the correlation of Nb latency with CTG amplification suggests that MLAEPs can reflect the extent of genetic abnormality.
Collapse
Affiliation(s)
- Kenji Arakawa
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- G Pelargonio
- Department of Cardiovascular Medicine, Institute of Cardiology, Catholic University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Savić D, Rakocvic-Stojanovic V, Keckarevic D, Culjkovic B, Stojkovic O, Mladenovic J, Todorovic S, Apostolski S, Romac S. 250 CTG repeats in DMPK is a threshold for correlation of expansion size and age at onset of juvenile-adult DM1. Hum Mutat 2002; 19:131-9. [PMID: 11793472 DOI: 10.1002/humu.10027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is associated with an expansion of CTG repeats in the 3'UTR of the DMPK gene. It is accepted, as in other trinucleotide diseases, that the number of the repeats is correlated with age at onset and severity of the disease. However, assessment of genotype-phenotype correlation in DM1 is complicated with the expansion-biased somatic instability of mutant alleles over time and difficulties in precise assessment of the number of repeats by standard Southern blot hybridization. In order to clarify this issue we defined DM1 expansion size in lymphocytes by three parameters: size of progenitor, average, and largest allele, using a more precise small-pool/long-range PCR technique. We found a negative linear correlation of age at onset and average expansion size in juvenile-adult DM1 patients (35 out of 46) whose progenitor allele is less than 245 repeats long. Our result favors the hypothesis of the existence of a threshold in the progenitor allele size beyond which number of CTG repeats does not influence age at onset. Potential clinical significance is that the average allele size could be a useful indicator for the age at onset in juvenile-adult DM1 patients with relatively short progenitor allele. To test whether somatic instability of mutant alleles influences the progression of DM1, patients were divided in three phenotypic classes according to the severity of neuromuscular symptoms. We showed that the largest expansion in each DM1 phenotypic class reflects somatic instability of mutant allele over time independently of progenitor allele size and patient's age at sampling. The mean of the largest expansion was significantly different between phenotypic classes, implying the possible association between expansion-biased somatic instability of mutant alleles over time and progression of neuromuscular symptoms.
Collapse
Affiliation(s)
- Dusanka Savić
- Faculty of Biology, University of Belgrade, Belgrade, Yugoslavia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mistry DJ, Moorman JR, Reddy S, Mounsey JP. Skeletal muscle Na currents in mice heterozygous for Six5 deficiency. Physiol Genomics 2001; 6:153-8. [PMID: 11526199 DOI: 10.1152/physiolgenomics.2001.6.3.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myotonic dystrophy results from a trinucleotide repeat expansion between the myotonic dystrophy protein kinase gene (Dmpk), which encodes a serine-threonine protein kinase, and the Six5 gene, which encodes a homeodomain protein. The disease is characterized by late bursts of skeletal muscle Na channel openings, and this is recapitulated in Dmpk -/- and Dmpk +/- murine skeletal muscle. To test whether deficiency of the nearby Six5 gene also affected Na channel gating in murine skeletal muscle, we measured Na currents from cell-attached patches in Six5 +/- mice and age-matched wild-type and Dmpk +/- mice. Late bursts of Na channel activity were defined as an opening probability >10% measured from 10 to 110 ms after depolarization. There was no significant difference in the occurrence of late Na channel bursts in wild-type and Six5 +/- muscle, whereas in Dmpk +/- muscle there was greater than fivefold increase in late bursts (P < 0.001). Compared with wild-type mice, Na current amplitude was unchanged in Six5 +/- muscle, whereas in Dmpk +/- muscle it was 36% reduced (P < 0.05). Thus, since Six5 +/- mice do not exhibit the Na channel gating abnormality of Dmpk deficiency, we conclude that Six5 deficiency does not contribute to the Na channel gating abnormality seen in dystrophia myotonica patients.
Collapse
Affiliation(s)
- D J Mistry
- Cardiovascular Division, Department of Internal Medicine, Cardiovascular Research Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
42
|
Johansson A, Boman K, Cederquist K, Forsberg H, Olsson T. Increased levels of tPA antigen and tPA/PAI-1 complex in myotonic dystrophy. J Intern Med 2001; 249:503-10. [PMID: 11422656 DOI: 10.1046/j.1365-2796.2001.00832.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the fibrinolytic system in myotonic dystrophy (DM1), a disease connected to features of the metabolic syndrome, including a prominent insulin resistance, increased body fat mass, and hypertriglyceridaemia. We hypothesized that abnormalities in the fibrinolytic system are linked to metabolic dysfunction in DM1. DESIGN Circulating morning levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) antigens, tPA/PAI-1 complex, lipids and insulin were determined. Genetic analyses, including calculation of allele size, were performed in all patients. Body fat mass was estimated with bioelectrical impedance analysis. SETTING Out-patient clinic in collaboration with Umeå University Hospital. SUBJECTS A total of 42 otherwise healthy patients with DM1 (22 men, 20 women; median age 41.5 years) and 50 controls (27 men, 23 women; median age 42.0 years). MAIN OUTCOME MEASURES The tPA and PAI-1 antigens, tPA/PAI-1 complex, blood lipids and body fat mass. RESULTS The tPA antigen and tPA/PAI-1 complex levels were significantly increased in DM1 patients (P < 0.001 and P < 0.05, respectively) whilst levels of PAI-1 did not differ from controls. Triglyceride levels were increased (P < 0.001) whereas HDL cholesterol levels were lower in DM1 patients (P < 0.05). Body fat mass was increased in DM1 patients (P < 0.001). CONCLUSIONS The fibrinolytic system is disturbed in DM1 patients, with increased levels of tPA and tPA/PAI-1 complex but paradoxically unaltered levels of PAI-1, in spite of a severely increased body fat mass. This may imply an abnormal function of adipose tissue in DM1, and calls for further studies of the fibrinolytic system in this disease.bstra
Collapse
Affiliation(s)
- A Johansson
- Department of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, Sweden
| | | | | | | | | |
Collapse
|
43
|
Pfeilsticker BH, Bertuzzo CS, Nucci A. Electrophysiological evaluation in myotonic dystrophy: correlation with CTG length expansion. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:186-91. [PMID: 11400022 DOI: 10.1590/s0004-282x2001000200006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In myotonic dystrophy (MD), disease severity has been correlated with expansion of CTG repeats in chromosome 19. The aims of this study were to evaluate efficacy of electromyography in the diagnosis of MD, access the frequency and the characteristics of peripheral involvement in the disease and to verify whether the CTG repeats correlated with the electrophysiological abnormalities. Twenty-five patients and six relatives at risk of carrying the MD gene were examined. Electrical myotonia (EM) was scored. Sensory and motor conduction velocity (CV) were studied in five nerves. Leukocyte DNA analysis was done in 26 subjects. Myopathy and myotonia were found in 27 cases. EM was most frequent in muscles of hand and in tibialis anterior. No significant correlation was found between EM scores and length of CTG expansions. EM scores correlated significantly with the degree of clinical myopathy, expressed by a muscular disability scale. Peripheral neuropathy was found in eight subjects and was not restricted to those who were diabetics.
Collapse
Affiliation(s)
- B H Pfeilsticker
- Department of Neurology, Faculty of Medicine, University of Campinas, SP, Brazil.
| | | | | |
Collapse
|
44
|
Mounsey JP, Mistry DJ, Ai CW, Reddy S, Moorman JR. Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum Mol Genet 2000; 9:2313-20. [PMID: 11001935 DOI: 10.1093/oxfordjournals.hmg.a018923] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy, a progressive autosomal dominant disorder, is associated with an expansion of a CTG repeat tract located in the 3'-untranslated region of a serine/threonine protein kinase, DMPK. DMPK modulates skeletal muscle Na channels in vitro, and thus we hypothesized that mice deficient in DMPK would have altered muscle Na channel gating. We measured macroscopic and single channel Na currents from cell-attached patches of skeletal myocytes from mice heterozygous (DMPK(+/-)) and homozygous (DMPK(-/-)) for DMPK loss. In DMPK(-/-) myocytes, Na current amplitude was reduced because of reduced channel number. Single channel recordings revealed Na channel reopenings, similar to the gating abnormality of human myotonic muscular dystrophy (DM), which resulted in a plateau of Na current. The gating abnormality deteriorated with increasing age. In DMPK(+/-) muscle there was reduced Na current amplitude and increased Na channel reopenings identical to those in DMPK(-/-) muscle. Thus, these mouse models of complete and partial DMPK deficiency reproduce the Na channel abnormality of the human disease, providing direct evidence that DMPK deficiency underlies the Na channel abnormality in DM.
Collapse
Affiliation(s)
- J P Mounsey
- Department of Internal Medicine (Cardiovascular Division), The Cardiovascular Research Center University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
45
|
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:95-130. [PMID: 10967355 DOI: 10.1016/s0165-0173(00)00019-9] [Citation(s) in RCA: 1422] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Collapse
Affiliation(s)
- L Buée
- INSERM U422, Place de Verdun, 59045 cedex, Lille, France.
| | | | | | | | | |
Collapse
|
46
|
M�rette C, Roy-Gagnon MH, Ghazzali N, Savard F, Boutin P, Roy MA, Maziade M. Anticipation in schizophrenia and bipolar disorder controlling for an information bias. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1096-8628(20000207)96:1<61::aid-ajmg13>3.0.co;2-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Marchini C, Lonigro R, Verriello L, Pellizzari L, Bergonzi P, Damante G. Correlations between individual clinical manifestations and CTG repeat amplification in myotonic dystrophy. Clin Genet 2000; 57:74-82. [PMID: 10733240 DOI: 10.1034/j.1399-0004.2000.570112.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disease caused by the expansion of a CTG repeat, located in the 3'-untranslated region of the DMPK gene. The number of CTG repeats broadly correlates with the overall severity of the disease. However, correlations between CTG repeat number and presence/absence or severity of individual clinical manifestations in the same patients are yet scarce. In this study the number of CTG repeats detected in blood cells of 24 DM subjects was correlated with the severity of single clinical manifestations. The presence/absence of muscular atrophy, respiratory insufficiency, cardiac abnormalities, diabetes, cataract, sleep disorders, sterility or hypogonadism is not related to the number of CTG repeats. Muscular atrophy and respiratory insufficiency are present with the highest frequency, occurring in 96 and 92% of the cases, respectively. A significant correlation was found with age of onset (r = -0.57, p<0.01), muscular disability (r = 0.46, p<0.05), intellective quotient (r = -0.58, p<0.01) and short-term memory (r= -0.59, p<0.01). Therefore, the CTG repeat number has a predictive value only in the case of some clinical manifestations, this suggesting that pathogenetic mechanisms of DM may differ depending on the tissue.
Collapse
Affiliation(s)
- C Marchini
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Perini GI, Menegazzo E, Ermani M, Zara M, Gemma A, Ferruzza E, Gennarelli M, Angelini C. Cognitive impairment and (CTG)n expansion in myotonic dystrophy patients. Biol Psychiatry 1999; 46:425-31. [PMID: 10435210 DOI: 10.1016/s0006-3223(99)00016-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myotonic dystrophy (DM) is a genetic multisystemic disease with muscular, endocrine, ocular, cardiac and cognitive impairment. The molecular basis of the disease has been identified in an unstable base triplet (CTG)n repeat located in the 3' untranslated region of the miotonin protein-kinase (MT-PK) gene on the long arm of chromosome 19. Cognitive impairment could be a direct expression of this genetic alteration at the central nervous system (CNS) level rather than a consequence of the neuromuscular impairment. To explore this hypothesis, we tested a group of genetically diagnosed, adult onset DM, of their nonaffected relatives (NAR), of patients with spinal muscle atrophy (SMA), and of normal controls using the Wechsler Adult Intelligence Scale (WAIS). METHODS Seventeen adult-onset DM patients, 9 NAR, 10 SMA patients and 20 unrelated normal controls (NC) were studied. Clinical, neuromuscular and neuropsychiatric evaluation, which included WAIS and the Schedule for Affective Disorders and Schizophrenia (SADS), were performed on the four groups. DM, NAR and NC were also assessed by a neurophysiological (P300) evaluation. A DNA analysis was performed in DM and in NAR to measure presence and magnitude of CTG expansion. RESULTS We found a statistically significant difference between verbal (p < .0003), nonverbal (p < .0001) and total (p < .0001) IQ of DM patients compared to IQs of NAR, SMA and NC. Seven out of 11 WAIS subtests were significantly and consistently lower in DM patients compared to SMA and/or NC. In DM patients there was a statistically significant negative correlation between nonverbal (r = -.68; p < .002) and total (r = .59; p < .01) IQ and (CTG)n. Patients with DM had a significantly lower P300 amplitude compared to NAR and NC. CONCLUSIONS Our study indicates that in DM there is a mild but significant cognitive impairment which correlates with the degree of CTG expansion and it is not dependent on the neuromuscular impairment; however further studies with larger groups of patients and controls are suggested to confirm our results, due to the small sample size and to a possible effect of educational level in our patients.
Collapse
Affiliation(s)
- G I Perini
- Department of Neurological and Psychiatric Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Combarros O, Paz J, Berciano J, Fernández-Luna JL. Progressive expansion of the myotonic dystrophy CTG repeat in asymptomatic individuals in three successive generations of a family. Eur J Neurol 1997; 4:192-5. [DOI: 10.1111/j.1468-1331.1997.tb00327.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Delacourte A, Buée L. Normal and pathological Tau proteins as factors for microtubule assembly. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 171:167-224. [PMID: 9066128 DOI: 10.1016/s0074-7696(08)62588-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tau proteins are microtubule-associated proteins. They regulate the dynamics of the microtubule network, especially involved in the axonal transport and neuronal plasticity. Tau proteins belong to a family of developmentally regulated isoforms generated by alternative splicing and phosphorylation. This generates several Tau variants that interact with tubulin and other proteins. Therefore, Tau proteins are influenced by many physiological regulations. Tau proteins are also powerful markers of the neuronal physiological state. Their degree of phosphorylation is a good marker of cell integrity. It is heavily disturbed in numerous neurodegenerative disorders, leading to a collapse of the microtubule network and the presence of intraneuronal lesions resulting from Tau aggregation. However, different biochemical and immunological patterns of pathological Tau proteins found among neurodegenerative disorders are useful markers for the understanding of the role of Tau protein isoforms and the diagnosis of these pathological conditions.
Collapse
|