1
|
Du Y, Thanapipatsiri A, Yokoyama K. Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products. Chembiochem 2023; 24:e202300342. [PMID: 37357819 PMCID: PMC10530009 DOI: 10.1002/cbic.202300342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nucleoside natural products show diverse biological activities and serve as leads for various application purposes, including human and veterinary medicine and agriculture. Studies in the past decade revealed that these nucleosides are biosynthesized through divergent mechanisms, in which early steps of the pathways can be classified into two types (C5' oxidation and C5' radical extension), while the structural diversity is created by downstream tailoring enzymes. Based on this biosynthetic logic, we investigated the genome mining discovery potentials of these nucleosides using the two enzymes representing the two types of C5' modifications: LipL-type α-ketoglutarate (α-KG) and Fe-dependent oxygenases and NikJ-type radical S-adenosyl-L-methionine (SAM) enzymes. The results suggest that this approach allows discovery of putative nucleoside biosynthetic gene clusters (BGCs) and the prediction of the core nucleoside structures. The results also revealed the distribution of these pathways in nature and implied the possibility of future genome mining discovery of novel nucleoside natural products.
Collapse
Affiliation(s)
- Yanan Du
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Anyarat Thanapipatsiri
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
2
|
Lauer B, Russwurm R, Bormann C. Molecular characterization of two genes from Streptomyces tendae Tü901 required for the formation of the 4-formyl-4-imidazolin-2-one-containing nucleoside moiety of the peptidyl nucleoside antibiotic nikkomycin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1698-706. [PMID: 10712601 DOI: 10.1046/j.1432-1327.2000.01162.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes nikQ and nikR were identified by sequencing DNA of the nikkomycin biosynthetic gene cluster from Streptomyces tendae Tü901/8c. The nikQ gene encodes a P450 cytochrome, and the predicted NikR gene product shows 48-56% sequence identity with uracil phosphoribosyltransferases from eukaryotic organisms. The nikQ and nikR genes were inactivated separately by insertion of a kanamycin-resistance cassette. Inactivation of the nikQ gene abolished synthesis of nikkomycins containing 4-formyl-4-imidazolin-2-one as the base (nikkomycins X and I), whereas production of nikkomycins containing uracil (nikkomycins Z and J) was not affected. Nikkomycin X and I production could be restored by feeding 4-formyl-4-imidazolin-2-one to the nikQ mutants, indicating that NikQ is responsible for its formation from L-histidine. Disruption of the nikR gene resulted in formation of decreased amounts of nikkomycins X and I, whereas nikkomycins Z and J were synthesized at wild-type levels. A fluorouracil-resistant nikR mutant lacking uracil phosphoribosyltransferase (UPRTase) activity did not synthesize nikkomycins X and I and accumulated 4-formyl-4-imidazolin-2-one in its culture filtrate, whereas formation of nikkomycins Z and J was unimpaired. The mutant was complemented to nikkomycin X and I production by nikR expressed from the mel promoter of plasmid pIJ702. The nikR gene expressed in Escherichia coli led to the production of UPRTase activity. Our results indicate that NikR converts 4-formyl-4-imidazolin-2-one to yield 5'-phosphoribosyl-4-formyl-4-imidazolin-2-one, the precursor of nikkomycins containing this base.
Collapse
Affiliation(s)
- B Lauer
- Mikrobiologie/Biotechnologie, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
3
|
Bormann C, Baier D, Hörr I, Raps C, Berger J, Jung G, Schwarz H. Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 1999; 181:7421-9. [PMID: 10601197 PMCID: PMC94197 DOI: 10.1128/jb.181.24.7421-7429.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The afp1 gene, which encodes the antifungal protein AFP1, was cloned from nikkomycin-producing Streptomyces tendae Tü901, using a nikkomycin-negative mutant as a host and screening transformants for antifungal activity against Paecilomyces variotii in agar diffusion assays. The 384-bp afp1 gene has a low G+C content (63%) and a transcription termination structure with a poly(T) region, unusual attributes for Streptomyces genes. AFP1 was purified from culture filtrate of S. tendae carrying the afp1 gene on the multicopy plasmid pIJ699. The purified protein had a molecular mass of 9,862 Da and lacked a 42-residue N-terminal peptide deduced from the nucleotide sequence. AFP1 was stable at extreme pH values and high temperatures and toward commercial proteinases. AFP1 had limited similarity to cellulose-binding domains of microbial plant cell wall hydrolases and bound to crab shell chitin, chitosan, and cell walls of P. variotii but showed no enzyme activity. The biological activity of AFP1, which represents the first chitin-binding protein from bacteria exhibiting antifungal activity, was directed against specific ascomycetes, and synergistic interaction with the chitin synthetase inhibitor nikkomycin inhibited growth of Aspergillus species. Microscopy studies revealed that fluorescein-labeled AFP1 strongly bound to the surface of germinated conidia and to tips of growing hyphae, causing severe alterations in cell morphogenesis that gave rise to large spherical conidia and/or swollen hyphae and to atypical branching.
Collapse
Affiliation(s)
- C Bormann
- Mikrobiologie/Biotechnologie, Universität Tübingen, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Kulowski K, Wendt-Pienkowski E, Han L, Yang K, Vining LC, Hutchinson CR. Functional Characterization of the jadI Gene As a Cyclase Forming Angucyclinones. J Am Chem Soc 1999. [DOI: 10.1021/ja982707f] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kerry Kulowski
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| | - Evelyn Wendt-Pienkowski
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| | - Lei Han
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| | - Keqian Yang
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| | - Leo C. Vining
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| | - C. Richard Hutchinson
- Contribution from the School of Pharmacy, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada
| |
Collapse
|
5
|
Seow KT, Meurer G, Gerlitz M, Wendt-Pienkowski E, Hutchinson CR, Davies J. A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol 1997; 179:7360-8. [PMID: 9393700 PMCID: PMC179686 DOI: 10.1128/jb.179.23.7360-7368.1997] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine as randomly as possible the role of the beta-ketoacyl and acyl carrier protein (ACP) components of bacterial type II polyketide synthases (PKSs), homologs of the chain-length-factor (CLF) genes were cloned from the environmental community of microorganisms. With PCR primers derived from conserved regions of known ketosynthase (KSalpha) and ACP genes specifying the formation of 16- to 24-carbon polyketides, two CLF (KSbeta) genes were cloned from unclassified streptomycetes isolated from the soil, and two were cloned from soil DNA without the prior isolation of the parent microorganism. The sequence and deduced product of each gene were distinct from those of known KSbeta genes and, by phylogenetic analysis, belonged to antibiotic-producing PKS gene clusters. Hybrid PKS gene cassettes were constructed with each novel KSbeta gene substituted for the actI-ORF2 or tcmL KSbeta subunit genes, along with the respective actI-ORF1 or tcmK KSalpha, tcmM ACP, and tcmN cyclase genes, and were found to produce an octaketide or decaketide product characteristic of the ones known to be made by the heterologous KSalpha gene partner. Since substantially less than 1% of the microorganisms present in soil are thought to be cultivatable by standard methods, this work demonstrates a potential way to gain access to a more extensive range of microbial molecular diversity and to biosynthetic pathways whose products can be tested for biological applications.
Collapse
Affiliation(s)
- K T Seow
- Terragen Diversity Inc., Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Meurer G, Gerlitz M, Wendt-Pienkowski E, Vining LC, Rohr J, Hutchinson CR. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. CHEMISTRY & BIOLOGY 1997; 4:433-43. [PMID: 9224566 DOI: 10.1016/s1074-5521(97)90195-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) and CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules. RESULTS We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products. CONCLUSIONS It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides.
Collapse
Affiliation(s)
- G Meurer
- School of Pharmacy, University of Wisconsin, 425 N. Charter St, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
7
|
Möhrle V, Roos U, Bormann C. Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tü901. Mol Microbiol 1995; 15:561-71. [PMID: 7783626 DOI: 10.1111/j.1365-2958.1995.tb02269.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of genes involved in nikkomycin production in Streptomyces tendae was investigated by two-dimensional gel electrophoresis of cellular proteins. Ten gene products (P1-P10) were identified that were synthesized when nikkomycin was produced; these proteins were not detected in non-producing mutants. N-terminal sequences of six of the 10 proteins were obtained by microsequencing of protein spots excised from preparative two-dimensional gels. Protein P8 was identified as L-histidine amino-transferase (HisAT), which has been previously correlated with nikkomycin production. By using oligonucleotide probes deduced from the N-terminal sequences of protein P2 and P6, we isolated an 8 kb BamHI fragment and a 6.5 kb PvuII fragment, respectively, from the genome of Streptomyces tendae Tü901. Restriction analyses revealed that both fragments overlapped within a region of 1.5 kb. Mapping of the oligonucleotide probe hybridizing sites indicated that the genes encoding protein P2 and P6 are closely spaced on the 8 kb BamHI fragment, and the latter is located on the overlapping region. DNA sequence analysis revealed that proteins P1 and P2 are encoded by a single gene, orfP1, that is translated at two initiation codons. The orfP1 gene was interrupted by homologous recombination using the integrating vector pWHM3. The gene-disrupted transformants did not produce nikkomycin, indicating that proteins P1 and P2 are essential for nikkomycin production. The data presented show that reverse genetics was successfully used to isolate genes involved in nikkomycin production.
Collapse
Affiliation(s)
- V Möhrle
- Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, Germany
| | | | | |
Collapse
|
8
|
Decker H, Motamedi H, Hutchinson CR. Nucleotide sequences and heterologous expression of tcmG and tcmP, biosynthetic genes for tetracenomycin C in Streptomyces glaucescens. J Bacteriol 1993; 175:3876-86. [PMID: 8509339 PMCID: PMC204804 DOI: 10.1128/jb.175.12.3876-3886.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide sequence of the tcmIII, tcmIc, and tcmVII region of the tetracenomycin (TCM) C gene cluster of Streptomyces glaucescens ETH 22794 (GLA.0) revealed the presence of two genes, tcmP and tcmG. The deduced product of tcmG resembles flavoprotein hydroxylases found in several other bacteria, whereas the predicted amino acid sequence of tcmP is not significantly similar to those of any known proteins in the available data bases. Southern blot hybridization revealed an approximately 180-bp deletion in a tcmIII (tcmG) mutant and a 1,800-bp insertion in a tcmVII (tcmP) mutant. Heterologous expression of tcmG and tcmP in Streptomyces lividans and tcmP in Escherichia coli established that tcmP encodes an O-methyltransferase, catalyzing the methylation of the C-9 carboxy group of TCM E to yield TCM A2, and that tcmG is responsible for the hydroxylation of TCM A2 at positions C-4, C-4a, and C-12a to give TCM C. These are the final two steps of TCM C biosynthesis.
Collapse
Affiliation(s)
- H Decker
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
9
|
Guilfoile PG, Hutchinson CR. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 1992; 174:3651-8. [PMID: 1592819 PMCID: PMC206054 DOI: 10.1128/jb.174.11.3651-3658.1992] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sequence analysis of the tcmA tetracenomycin C resistance gene from Streptomyces glaucescens GLA.O (ETH 22794) identifies one large open reading frame whose deduced product has sequence similarity to the mmr methylenomycin resistance gene from Streptomyces coelicolor, the Streptomyces rimosus tet347 (otrB) tetracycline resistance gene, and the atr1 aminotriazole resistance gene from Saccharomyces cerevisiae. These genes are thought to encode proteins that act as metabolite export pumps powered by transmembrane electrochemical gradients. A divergently transcribed gene, tcmR, is located in the region upstream of tcmA. The deduced product of tcmR resembles the repressor proteins encoded by tetR regulatory genes from Escherichia coli and the actII-orf1 gene from S. coelicolor. Transcriptional analysis of tcmA and tcmR indicates that these genes have back-to-back and overlapping promoter regions.
Collapse
Affiliation(s)
- P G Guilfoile
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
10
|
Abstract
Structure and biological activity of thirty-six new nucleoside antibiotics which appeared after the 1988 review are described. New synthetic analogs of neplanocin and oxetanocin are also described with special emphasis on their antiviral activities. New biosynthetic findings on nikkomycins, blasticidin S, and griseolic acid are also reviewed.
Collapse
Affiliation(s)
- K Isono
- Antibiotics Laboratory, RIKEN, Institute of Physical and Chemical Research, Saitama-ken, Japan
| |
Collapse
|
11
|
Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 1991; 88:8553-7. [PMID: 1924314 PMCID: PMC52547 DOI: 10.1073/pnas.88.19.8553] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sequence analysis of the drrAB locus from Streptomyces peucetius (American Type Culture Collection 29050) reveals the presence of two genes, drrA and drrB, both of which are required for daunorubicin and doxorubicin (Adriamycin) resistance in the heterologous host Streptomyces lividans. The DrrA protein is similar to a large family of ATP-binding transport proteins, including the proteins encoded by the mdr genes from mammalian tumor cells, which confer resistance to daunorubicin, doxorubicin, and some other structurally unrelated chemotherapeutic agents. The DrrB protein shows no significant similarity to other known proteins but is probably very hydrophobic, suggesting that it is located in the bacterial membrane. These two proteins may act jointly to confer daunorubicin and doxorubicin resistance by an analog of the antiport mechanism established for mammalian tumor cells that contain amplified or overexpressed mdr genes. Transcriptional analysis of the drrAB region supports the presence of one transcript containing drrA and drrB and indicates that these genes are expressed only during antibiotic production.
Collapse
Affiliation(s)
- P G Guilfoile
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|