1
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
2
|
Tikhonenkov DV, Jamy M, Borodina AS, Belyaev AO, Zagumyonnyi DG, Prokina KI, Mylnikov AP, Burki F, Karpov SA. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. Open Biol 2022; 12:210325. [PMID: 35291881 PMCID: PMC8924772 DOI: 10.1098/rsob.210325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telonemia is a poorly known major phylum of flagellated eukaryotes with a unique combination of morphological traits. Phylogenomics recently revealed the phylogenetic position of telonemids as sister to SAR, one of the largest groups of eukaryotes, comprising Stramenopiles, Alveolata and Rhizaria. Due to this key evolutionary position, investigations of telonemids are of critical importance for elucidating the origin and diversification of an astounding diversity of eukaryotic forms and life strategies. To date, however, only two species have been morphologically characterized from Telonemia, which do not represent this genetically very diverse group. In this study, we established cultures for six new telonemid strains, including the description of five new species and a new genus. We used these cultures to update the phylogeny of Telonemia and provide a detailed morphological and ultrastructural investigation. Our data elucidate the origin of TSAR from flagellates with complex morphology and reconstruction of the ancestral structure of stramenopiles, alveolates and rhizarians, and their main synapomorphic characters. Since telonemids are a common component of aquatic environments, the features of their feeding, behaviour and ecological preferences observed in clonal cultures and the results of global metabarcoding analysis contribute to a deeper understanding of organization of microbial food webs.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Anastasia S. Borodina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia,Department of Zoology and Parasitology, Voronezh State University, Voronezh, Russia
| | - Artem O. Belyaev
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia,Department of Zoology and Ecology, Penza State University, Penza, Russia
| | - Dmitry G. Zagumyonnyi
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Kristina I. Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia,Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Alexander P. Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey A. Karpov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia,Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
3
|
Microheliella maris (Microhelida ord. n.), an Ultrastructurally Highly Distinctive New Axopodial Protist Species and Genus, and the Unity of Phylum Heliozoa. Protist 2012; 163:356-88. [DOI: 10.1016/j.protis.2011.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/09/2011] [Indexed: 11/30/2022]
|
4
|
Bass D, Chao EEY, Nikolaev S, Yabuki A, Ishida KI, Berney C, Pakzad U, Wylezich C, Cavalier-Smith T. Phylogeny of Novel Naked Filose and Reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea Revised. Protist 2009; 160:75-109. [DOI: 10.1016/j.protis.2008.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
|
5
|
PATTERSON DAVIDJ, FENCHEL T. Insights into the evolution of heliozoa (Protozoa, Sarcodina) as provided by ultrastructural studies on a new species of flagellate from the genus Pteridomonas. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1985.tb00383.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 2004; 101:8066-71. [PMID: 15148395 PMCID: PMC419558 DOI: 10.1073/pnas.0308602101] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent molecular phylogenetic studies revealed the extraordinary diversity of single-celled eukaryotes. However, the proper assessment of this diversity and accurate reconstruction of the eukaryote phylogeny are still impeded by the lack of molecular data for some major groups of easily identifiable and cultivable protists. Among them, amoeboid eukaryotes have been notably absent from molecular phylogenies, despite their diversity, complexity, and abundance. To partly fill this phylogenetic gap, we present here combined small-subunit ribosomal RNA and actin sequence data for the three main groups of "Heliozoa" (Actinophryida, Centrohelida, and Desmothoracida), the heliozoan-like Sticholonche, and the radiolarian group Polycystinea. Phylogenetic analyses of our sequences demonstrate the polyphyly of heliozoans, which branch either as an independent eukaryotic lineage (Centrohelida), within stramenopiles (Actinophryida), or among cercozoans (Desmothoracida), in broad agreement with previous ultrastructure-based studies. Our data also provide solid evidence for the existence of the Rhizaria, an emerging supergroup of mainly amoeboid eukaryotes that includes desmothoracid heliozoans, all radiolarians, Sticholonche, and foraminiferans, as well as various filose and reticulose amoebae and some flagellates.
Collapse
Affiliation(s)
- Sergey I Nikolaev
- A. N. Belozersky Institute of Physico-Chemical Biology, Department of Evolutionary Biochemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The protozoan phylum Cercozoa embraces numerous ancestrally biciliate zooflagellates, euglyphid and other filose testate amoebae, chlorarachnean algae, phytomyxean plant parasites (e.g. Plasmodiophora, Phagomyxa), the animal-parasitic Ascetosporea, and Gromia. We report 18S rRNA sequences of 27 culturable zooflagellates, many previously of unknown taxonomic position. Phylogenetic analysis shows that all belong to Cercozoa. We revise cercozoan classification in the light of our analysis and ultrastructure, adopting two subphyla: Filosa subphyl. nov. a clade comprising Monadofilosa and Reticulofilosa, ranked as superclasses, ancestrally having the same very rare base-pair substitution as all opisthokonts; and subphylum Endomyxa emend. comprising classes Phytomyxea (Plasmodiophorida, Phagomyxida), Ascetosporea (Haplosporidia, Paramyxida, Claustrosporida ord. nov.) and Gromiidea cl. nov., which did not. Monadofilosa comprise Sarcomonadea, zooflagellates with a propensity to glide on their posterior cilium and/or generate filopodia (e.g. Metopion; Cercomonas; Heteromitidae - Heteromita, Bodomorpha, Proleptomonas and Allantion) and two new classes: Imbricatea (with silica scales: Euglyphida; Thaumatomonadida, including Alias, Thaumatomastix) and Thecofilosea (Cryomonadida; Tectofilosida ord. nov. - non-scaly filose amoebae, e.g. Pseudodifflugia). Reticulofilosa comprise classes Chlorarachnea, Spongomonadea and Proteomyxidea (e.g. Massisteria, Gymnophrys, a Dimorpha-like protozoan). Cercozoa, now with nine classes and 17 orders (four new), will probably include many, possibly most, other filose and reticulose amoebae and zooflagellates not yet assigned to phyla.
Collapse
|
8
|
Abstract
The discipline of evolutionary protistology has emerged in the past 30 yr. There is as yet no agreed view of how protists are interrelated or how they should be classified. The foundations of a stable taxonomic superstructure for the protists and other eukaryotes lie in cataloging the diversity of the major monophyletic lineages of these organisms. The use of common patterns of cell organization (ultrastructural identity) seems to provide us with the most robust hypotheses of such lineages. These lineages are placed in 71 groups without identifiable sister taxa. These groups are here referred to as "major building blocks." For the first time, the compositions, ultrastructural identities, synapomorphies (where available), and subgroups of the major building blocks are summarized. More than 200 further lineages without clear identities are listed. This catalog includes all known major elements of the comprehensive evolutionary tree of protists and eukaryotes. Different approaches among protistologists to issues of nomenclature, ranking, and definitions of these groups are discussed, with particular reference to two groups-the stramenopiles and the Archezoa. The concept of "extended in-group" is introduced to refer to in-groups and the most proximate sister group and to assist in identifying the hierarchical location of taxa.
Collapse
|
9
|
Analyses of heliozoan interrelationships: an example of the potentials and limitations of ultrastructural approaches to the study of protistan phylogeny. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rspb.1986.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Concepts about specific relationships among various groups of protists are diverse and protist taxonomy is consequently unstable. In order to investigate the causes of this variety, data (mainly ultrastructural) relating to 198 characters of 25 species of heliozoa and other protozoa are analysed. Procedures are used which are compatible with numerical taxonomy (single linkage, complete linkage and group average cluster analyses), cladistic procedures (Camin–Sokal, Dollo and Wagner parsimony analyses) and evolutionary taxonomy (an intuitive tree). The results are presented as branching diagrams. There is no complete congruence among any of the techniques, but all give similar results in some important aspects. The Wagner and Dollo parsimony analyses give those results which are most credible. The results corroborate the view that several major traditional taxa of protozoa (the heliozoa, flagellates, amoebae and filose amoebae) are polyphyletic and require revision. All of the analyses identify the following clusters: actinophryid heliozoa, centrohelid heliozoa, chrysophyte flagellates, actinomonad and pedinellid flagellates and nucleariid filose amoebae. As there is no disagreement, these are confirmed as monophyletic taxa. There is a strong suggestion for a close relationship between dimorphid flagellates and desmothoracid heliozoa. There is some support for the suggestion that the actinophryid heliozoa are more closely related to actinomonad helioflagellates than to other heliozoa. The results are summarized as an unrooted ‘true tree'. The lack of agreement among the analyses appears not to be due to a lack of rigour in analytical procedures, but to an inadequate supply of data. The paucity of data cannot be compensated for by the application of repeatable techniques. Most relationships among high level protist taxa are likely to be (currently) obscured by similar limitations. Ultrastructural data are well suited to mapping out the diversity of protozoa. Electron microscopy currently appears to be the most valuable technique for investigating problems of evolutionary relationships of protists. Various hurdles to the development of a natural (phylogenetic) classification of protists are discussed.
Collapse
|
10
|
Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ, Iversen N. Microbial diversity and activity in a Danish Fjord with anoxic deep water. ACTA ACUST UNITED AC 1995. [DOI: 10.1080/00785326.1995.10430576] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Verhagen FJ, Zölffel M, Brugerolle G, Patterson DJ. Adriamonas peritocrescens gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae Incertae Sedis). Eur J Protistol 1994. [DOI: 10.1016/s0932-4739(11)80076-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
|
13
|
Abstract
Representatives from most of the protist phyla were probed by immunofluorescence or by immunoblotting with an anti-tubulin antibody of sharp specificity previously raised against Paramecium axonemal tubulin. Excellent intra-phylum homogeneity of results was recorded except for chlorophytes. All ciliates, dinoflagellates and cryptomonads tested were strongly positive while actinopods, Euglenozoa and parabasalids were negative. All representatives of the broad chromophyte assemblage were positive while all rhizopods were negative. This simple binary immunological character was superimposed on a number of published protist phylogenies and seen to fit very well with some of them. Other immunological approaches to protist taxonomy and evolution are briefly reviewed.
Collapse
Affiliation(s)
- G Brugerolle
- Groupe de Zoologie et Protistologie, Université de Clermont, Aubiere, France
| | | |
Collapse
|
14
|
|
15
|
Dürrschmidt M, Patterson DJ. A light and electron microscopic study of a new species of centroheliozoon, Chlamydaster fimbriatus. Tissue Cell 1987; 19:365-76. [DOI: 10.1016/0040-8166(87)90032-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/1987] [Revised: 03/04/1987] [Indexed: 11/17/2022]
|