1
|
Sangshetti JN, Shinde DB, Kulkarni A, Arote R. Two decades of antifilarial drug discovery: a review. RSC Adv 2017. [DOI: 10.1039/c7ra01857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filariasis is one of the oldest, most debilitating, disabling, and disfiguring neglected tropical diseases with various clinical manifestations and a low rate of mortality, but has a high morbidity rate, which results in social stigma.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
2
|
Ray RM, Bhattacharya S, Bavaria MN, Viar MJ, Johnson LR. Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis. Amino Acids 2014; 46:2005-13. [PMID: 24824458 DOI: 10.1007/s00726-014-1757-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4 h in serum-starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium; however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine-depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD, leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN, 38163, USA,
| | | | | | | | | |
Collapse
|
3
|
Lee NKL, MacLean HE. Polyamines, androgens, and skeletal muscle hypertrophy. J Cell Physiol 2011; 226:1453-60. [PMID: 21413019 DOI: 10.1002/jcp.22569] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The naturally occurring polyamines, spermidine, spermine, and their precursor putrescine, play indispensible roles in both prokaryotic and eukaryotic cells, from basic DNA synthesis to regulation of cell proliferation and differentiation. The rate-limiting polyamine biosynthetic enzymes, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, are essential for mammalian development, with knockout of the genes encoding these enzymes, Odc1 and Amd1, causing early embryonic lethality in mice. In muscle, the involvement of polyamines in muscle hypertrophy is suggested by the concomitant increase in cardiac and skeletal muscle mass and polyamine levels in response to anabolic agents including β-agonists. In addition to β-agonists, androgens, which increase skeletal mass and strength, have also been shown to stimulate polyamine accumulation in a number of tissues. In muscle, androgens act via the androgen receptor to regulate expression of polyamine biosynthetic enzyme genes, including Odc1 and Amd1, which may be one mechanism via which androgens promote muscle growth. This review outlines the role of polyamines in proliferation and hypertrophy, and explores their possible actions in mediating the anabolic actions of androgens in muscle.
Collapse
Affiliation(s)
- Nicole K L Lee
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | |
Collapse
|
4
|
Ahmad R, Srivastava AK. Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents. J Helminthol 2008; 81:261-80. [PMID: 17875226 DOI: 10.1017/s0022149x07799133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.
Collapse
Affiliation(s)
- Rumana Ahmad
- Division of Biochemistry, Po Box 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
| | | |
Collapse
|
5
|
Kim JS, Kim TL, Kim KC, Choe C, Chung HW, Cho EW, Kim IG. S-Adenosylmethionine decarboxylase partially regulates cell growth of HL-60 cells by controlling the intracellular ROS level: Early senescence and sensitization to γ-radiation. Arch Biochem Biophys 2006; 456:58-70. [PMID: 17069747 DOI: 10.1016/j.abb.2006.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/17/2022]
Abstract
S-Adenosylmethionine decarboxylase (SAMDC) is a key enzyme for the biosynthesis of spermidine. SAMDC-suppressed HL-60 cells overproduced intracellular reactive oxygen species (ROS), which led to cell growth defect and partial cell death. ROS overproduction was caused by a decrease of the total glutathione (GSH) and the ratio of reduced to oxidized GSH, and by an increase of the intracellular iron uptake. When analyzed by real-time polymerase chain reaction, the transcripts of the genes involved in the GSH synthesis (gamma-glutamyl cysteine synthetase, GSH synthetase), as well as the gene of the GSH-reducing enzyme (NADP+-dependent isocitrate dehydrogenase), were decreased dramatically in these cells. DNA-repairing genes (ATM, PARP, RAD51 and MSH2) also were not activated transcriptionally. In these situations, excessive ROS induced severe DNA damage, which could not be repaired, and ultimately led the cells to a spontaneous cell death or an early senescence state. For such cells, gamma-radiation and cisplatin, which are direct DNA-damaging agents, were very effective for promoting cell death.
Collapse
Affiliation(s)
- Jin Sik Kim
- Department of Radiation Biology, Environment Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Kim JS, Lee J, Chung HW, Choi H, Paik SG, Kim IG. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:160-166. [PMID: 21783704 DOI: 10.1016/j.etap.2006.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/14/2006] [Indexed: 05/31/2023]
Abstract
Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.
Collapse
Affiliation(s)
- Jin Sik Kim
- Department of Radiation Biology, Environment Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
HPLC of Biogenic Amines as 6-Aminoquinolyl-N-hydroxysuccinimidyl Derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0301-4770(05)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Ekelund S, Nygren P, Larsson R. Guanidino-containing drugs in cancer chemotherapy: biochemical and clinical pharmacology. Biochem Pharmacol 2001; 61:1183-93. [PMID: 11322922 DOI: 10.1016/s0006-2952(01)00570-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pharmacology and clinical application of three guanidino-containing compounds are reviewed in this commentary with special focus on a new member of this group of drugs, CHS 828 [N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine]. m-Iodobenzylguanidine (MIBG) and methylglyoxal bis(guanylhydrazone) (MGBG) have been extensively studied, preclinically as well as clinically, and have established use as anticancer agents. MIBG has structural similarities to the neurotransmitter, norepinephrine, and MGBG is a structural analog of the natural polyamine spermidine. CHS 828 is a pyridyl cyanoguanidine newly recognized as having cytotoxic effects when screening antihypertensive compounds. Apart from having the guanidino groups in common, there are many differences between these drugs in both structure and their mechanisms of action. However, they all inhibit mitochondrial function, a seemingly unique feature among chemotherapeutic drugs. In vitro in various cell lines and primary cultures of patient tumor cells and in vivo in various tumor models, CHS 828 has cytotoxic properties unlike any of the standard cytotoxic drugs with which it has been compared. Among these are non-cross-resistance to standard drugs and pronounced activity in tumor models acknowledged to be highly drug-resistant. Similar to MIBG, CHS 828 induces an early increase in extracellular acidification, due to stimulation of the glycolytic flux. Furthermore, ATP levels decrease, and the syntheses of DNA and protein are shut off after approximately 30 hr of exposure, indicating active cell death. CHS 828 is now in early clinical trials, the results of which are eagerly awaited.
Collapse
Affiliation(s)
- S Ekelund
- Department of Clinical Pharmacology, University Hospital, S-751 85, Uppsala, Sweden.
| | | | | |
Collapse
|
9
|
Yuan Q, Ray RM, Viar MJ, Johnson LR. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G130-8. [PMID: 11123206 DOI: 10.1152/ajpgi.2001.280.1.g130] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.
Collapse
Affiliation(s)
- Q Yuan
- Department of Physiology, College of Medicine, The University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
10
|
Yuan Q, Viar MJ, Ray RM, Johnson LR. Putrescine does not support the migration and growth of IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2000; 278:G49-56. [PMID: 10644561 DOI: 10.1152/ajpgi.2000.278.1.g49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.
Collapse
Affiliation(s)
- Q Yuan
- Department of Physiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
11
|
Da'dara AA, Mett H, Walter RD. MGBG analogues as potent inhibitors of S-adenosylmethionine decarboxylase of Onchocerca volvulus. Mol Biochem Parasitol 1998; 97:13-9. [PMID: 9879883 DOI: 10.1016/s0166-6851(98)00124-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyamines are essential for cell growth and differentiation and therefore, S-adenosylmethionine decarboxylase (SAMDC), a key regulatory enzyme of the polyamine biosynthesis, is considered as a potentially important target for chemotherapy of filarial infections. Recombinant Onchocerca volvulus SAMDC was expressed in Escherichia coli and characterised. The enzyme activity was found to be stimulated 15-fold by addition of 1 mM putrescine. The Km-value for S-adenosylmethionine was determined to be 36 microM. Furthermore, the efficiencies of SAMDC inhibitors were analysed: Berenil inhibits the enzyme activity competitively with a Ki-value of 0.1 microM. MDL 73811 acts as an irreversible inhibitor with a Ki-value of 1.4 microM. Recently synthesised aromatic methylglyoxal bis(guanylhydrazone) analogues demonstrated high efficacy as inhibitors of the SAMDCs. Some of these analogues exhibited Ki-values of 5 and 14 nM for the Onchocerca enzyme, a result which shows an up to 100-fold increase in specificity compared to the value of 0.47 microM for methylglyoxal bis(guanylhydrazone). These inhibitors might have potential as drug candidates against filarial worms.
Collapse
Affiliation(s)
- A A Da'dara
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemistry, Hamburg, Germany
| | | | | |
Collapse
|
12
|
Svensson F, Mett H, Persson L. CGP 48664, a potent and specific S-adenosylmethionine decarboxylase inhibitor: effects on regulation and stability of the enzyme. Biochem J 1997; 322 ( Pt 1):297-302. [PMID: 9078276 PMCID: PMC1218191 DOI: 10.1042/bj3220297] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian S-adenosylmethionine decarboxylase (AdoMetDC) catalyses a regulatory important step in the biosynthesis of polyamines and is a potential target for therapeutic agents against various parasitic diseases and proliferative disorders. In the present study we examined the effects of a newly synthesized AdoMetDC inhibitor. 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664), on polyamine metabolism in the mouse leukaemia cell line L1210. Treatment of the cells with 2 microM CGP 48664 led to a depletion of cellular spermidine and spermine. The putrescine content, in contrast, was markedly increased. Cells seeded in the presence of the inhibitor showed a significant decrease in growth rate, which was fully reversed by the addition of 2 microM spermidine or 1 microM spermine. The syntheses of ornithine decarboxylase and AdoMetDC were greatly increased in cells treated with CGP 48664. These increases were not correlated with similar changes in the mRNA levels, indicating the involvement of a translational mechanism. CGP 48664 was demonstrated to be a very poor competitor of spermidine uptake in the L1210 cells. L1210 cells deficient in polyamine transport were as sensitive to the antiproliferative effect of the inhibitor as were the parental cells, indicating that CGP 48664 did not enter the cells by the polyamine transport system. In addition to inhibiting AdoMetDC, CGP 48664 stabilized the enzyme against degradation. In the present study we also demonstrated that aminoguanidine (AMG), which is frequently used in cellular systems to inhibit any action of serum polyamine oxidase, apparently inhibits AdoMetDC by an irreversible mechanism that markedly stabilizes the enzyme against proteolytic degradation. CGP 48664 and the parental compound methylglyoxal bis(guanylhydrazone), which is also a potent inhibitor of AdoMetDC, contain one or two AMG-like moieties; the importance of these residues in the inhibition of AdoMetDC is discussed.
Collapse
Affiliation(s)
- F Svensson
- Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | |
Collapse
|
13
|
Da'Dara AA, Henkle-Dührsen K, Walter RD. A novel trans-spliced mRNA from Onchocerca volvulus encodes a functional S-adenosylmethionine decarboxylase. Biochem J 1996; 320 ( Pt 2):519-30. [PMID: 8973561 PMCID: PMC1217960 DOI: 10.1042/bj3200519] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complete cDNA and genomic sequences encoding the Onchocerca volvulus S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine biosynthesis, have been isolated and characterized. The deduced amino acid sequence encodes a 42 kDa proenzyme with a moderate level of sequence homology to eukaryotic SAMDCs. Enzymically active O. volvulus SAMDC was expressed at a high level in an Escherichia coli mutant strain lacking endogenous SAMDC. The recombinant enzyme was purified to homogeneity using DEAE-cellulose, methylglyoxal bis(guanylhydrazone)-Sepharose and Superdex S-200 chromatography. It was determined that the recombinant proenzyme is cleaved to produce 32 and 10 kDa subunits. The sequence of the N-terminal portion of the large subunit was determined and comparison with the sequence of the proenzyme revealed that the precise cleavage site lies between Glu86 and Ser87. Gel-filtration experiments demonstrated that these two subunits combine to form an active heterotetramer. Comparison of the cDNA and genomic sequences revealed that the SAMDC mRNA undergoes both cis- and trans-splicing in its 5'-untranslated region (UTR). Anchored PCR on O. volvulus mRNA confirmed the cDNA sequence and identified two distinct trans-spliced products, a 22-nucleotide spliced-leader sequence and a 138 bp sequence containing the 22 nucleotide spliced-leader sequence. Genomic Southern-blot analysis suggests that the O. volvulus SAMDC is encoded by a single-copy gene. This gene spans 5.3 kb and is comprised of nine exons and eight introns. The first intron is located in the 5'-UTR and processing of this intron has a potential regulatory function. The 5'-flanking region of the gene contains potential transcriptional regulatory elements such as a TATA box, two CAAT boxes and AP-1-, C/EBP-, ELP-, H-APF-1-, HNF-5- and PEA3-binding sites.
Collapse
Affiliation(s)
- A A Da'Dara
- Bernhard Nocht Institute for Tropical medicine, Department of Biochemistry, Hamburg, Germany
| | | | | |
Collapse
|