1
|
Freire MÁ. The origins of photosynthetic systems: Clues from the phosphorus and sulphur chemical scenarios. Biosystems 2023; 226:104873. [PMID: 36906114 DOI: 10.1016/j.biosystems.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Photosynthesis is the predominant biochemical process of carbon dioxide assimilation in the biosphere. To reduce carbon dioxide into organic compounds, photosynthetic organisms have one or two distinct photochemical reaction centre complexes with which they capture solar energy and generate ATP and reducing power. The core polypeptides of the photosynthetic reaction centres show low homologies but share overlapping structural folds, overall architecture, similar functional properties and highly conserved positions in protein sequences suggesting a common ancestry. However, the other biochemical components of photosynthetic apparatus appear to be a mosaic resulting from different evolutionary trajectories. The current proposal focusses on the nature and biosynthetic pathways of some organic redox cofactors that participate in the photosynthetic systems: quinones, chlorophyll and heme rings and their attached isoprenoid side chains, as well as on the coupled proton motive forces and associated carbon fixation pathways. This perspective highlights clues about the involvement of the phosphorus and sulphur chemistries that would have shaped the different types of photosynthetic systems.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Freire MÁ. Short non-coded peptides interacting with cofactors facilitated the integration of early chemical networks. Biosystems 2021; 211:104547. [PMID: 34547425 DOI: 10.1016/j.biosystems.2021.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Independently developed iron-sulphur/thioester- and phosphate-driven chemical reactions would have set up two distinct reaction networks prior to coupling in a proto-metabolic system supporting a minimal organisation closure. Each chemical system assisted initially by simple catalysts and then by more complex cofactors would have provided the precursors of the small metabolites and monomer units along with their respective polymers through dehydrating template-independent assemblies. For example, acylation reactions mediated by activated thioester groups produced peptides, fatty acids and polyhydroxyalkanoates, while phosphorylation reactions by phosphorylating agents allowed the synthesis of polysaccharides, polyribonucleotides and polyphosphates. Here, we address how these independent chemical systems might fit together and shaped a proto-metabolic system, focusing specifically on cofactors as molecular fossils of metabolism. As a result, the proposed overview suggests that non-coded peptides capable of binding a variety of ligands, but in particular with a redox active versatility and/or group transfer potential could have facilitated the chemical connections that led to a minimal closure with a proto-metabolism. Later developments would have made it possible to establish a cellular organisation with more complex and interdependent metabolic pathways.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC). Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem 2021; 109:104721. [PMID: 33618255 DOI: 10.1016/j.bioorg.2021.104721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
Collapse
Affiliation(s)
- Tatsiana Sushko
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Kavaleuskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Daniil Vakhrameev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; ESRF - The European Synchrotron, 38000 Grenoble, France
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kouhei Tsumoto
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
4
|
Sodré V, Araujo JN, Gonçalves TA, Vilela N, Braz ASK, Franco TT, de Oliveira Neto M, Damasio ARDL, Garcia W, Squina FM. An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies. PLoS One 2019; 14:e0212629. [PMID: 30802241 PMCID: PMC6388921 DOI: 10.1371/journal.pone.0212629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/06/2019] [Indexed: 11/18/2022] Open
Abstract
Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs). In this context, these enzymes are of biotechnological interest for conversion of lignin-derived FA into high value chemicals. In this study, we describe the first structural characterization of a prokaryotic Fcs, named FCS1, isolated from a lignin-degrading microbial consortium. The FCS1 optimum pH and temperature were 9 and 37°C, respectively, with Km of 0.12 mM and Vmax of 36.82 U/mg. The circular dichroism spectra indicated a notable secondary structure stability at alkaline pH values and high temperatures. This secondary structure stability corroborates the activity data, which remains high until pH 9. The Small Angle X-Ray Scattering analyses resulted on the tertiary/quaternary structure and the low-resolution envelope in solution of FCS1, which was modeled as a homodimer using the hyperthermophilic nucleoside diphosphate-forming acetyl-CoA synthetase from Candidatus Korachaeum cryptofilum. This study contributes to the field of research by establishing the first biophysical and structural characterization for Fcs, and our data may be used for comparison against novel enzymes of this class that to be studied in the future.
Collapse
Affiliation(s)
- Victoria Sodré
- Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Thiago Augusto Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Nathália Vilela
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | - Telma Teixeira Franco
- Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mário de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - André Ricardo de Lima Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fabio Marcio Squina
- Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Structure of NDP-forming Acetyl-CoA synthetase ACD1 reveals a large rearrangement for phosphoryl transfer. Proc Natl Acad Sci U S A 2016; 113:E519-28. [PMID: 26787904 DOI: 10.1073/pnas.1518614113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The NDP-forming acyl-CoA synthetases (ACDs) catalyze the conversion of various CoA thioesters to the corresponding acids, conserving their chemical energy in form of ATP. The ACDs are the major energy-conserving enzymes in sugar and peptide fermentation of hyperthermophilic archaea. They are considered to be primordial enzymes of ATP synthesis in the early evolution of life. We present the first crystal structures, to our knowledge, of an ACD from the hyperthermophilic archaeon Candidatus Korachaeum cryptofilum. These structures reveal a unique arrangement of the ACD subunits alpha and beta within an α2β2-heterotetrameric complex. This arrangement significantly differs from other members of the superfamily. To transmit an activated phosphoryl moiety from the Ac-CoA binding site (within the alpha subunit) to the NDP-binding site (within the beta subunit), a distance of 51 Å has to be bridged. This transmission requires a larger rearrangement within the protein complex involving a 21-aa-long phosphohistidine-containing segment of the alpha subunit. Spatial restraints of the interaction of this segment with the beta subunit explain the necessity for a second highly conserved His residue within the beta subunit. The data support the proposed four-step reaction mechanism of ACDs, coupling acyl-CoA thioesters with ATP synthesis. Furthermore, the determined crystal structure of the complex with bound Ac-CoA allows first insight, to our knowledge, into the determinants for acyl-CoA substrate specificity. The composition and size of loops protruding into the binding pocket of acyl-CoA are determined by the individual arrangement of the characteristic subdomains.
Collapse
|
6
|
Di Giulio M. The beta-sheets of proteins, the biosynthetic relationships between amino acids, and the origin of the genetic code. ORIGINS LIFE EVOL B 1996; 26:589-609. [PMID: 9008882 DOI: 10.1007/bf01808222] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two forces are generally hypothesised as being responsible for conditioning the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships (relationships between precursor and product amino acids). If we assume that the biosynthetic relationships between amino acids were fundamental in defining the genetic code, then it is reasonable to expect that the distribution of physicochemical properties among the amino acids in precursor-product relationships cannot be random but must, rather, be affected by some selective constraints imposed by the structure of primitive proteins. Analysis shows that measurements representing the 'size' of amino acids, e.g. bulkiness, are specifically associated to the pairs of amino acids in precurso-product relationships. However, the size of amino acids cannot have been selected per se but, rather, because it reflects the beta-sheets of proteins which are, therefore, identified as the main adaptive theme promoting the origin of genetic code organization. Whereas there are no traces of the alpha-helix in the genetic code table. The above considerations make it necessary to re-examine the relationship linking the hydrophilicity of the dinucleoside monophosphates of anticodons and the polarity and bulkiness of amino acids. It can be concluded that this relationship seems to be meaningful only between the hydrophilicity of anticodons and the polarity of amino acids. The latter relationship is supposed to have been operative on hairpin structures, ancestors of the tRNA molecule. Moreover, it is on these very structures that the biosynthetic links between precursor and product amino acids might have been achieved, and the interaction between the hydrophilicity of anticodons and the polarity of amino acids might have had a role in the concession of codons (anticodons) from precursors to products.
Collapse
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Napoli, Italy
| |
Collapse
|
7
|
|
8
|
Abstract
The physicochemical properties of beta-turns suggest their biological importance prior to the formation of the genetic code. These properties include ones potentially affecting the preference for either L- or D-amino acids. The abundance of certain amino acids in beta-turns is correlated with their assignment to a small, well-defined part of the genetic code and with their role as metabolic precursors for other amino acids. It is proposed that in the prebiotic environment, beta-turns became objects of selection that influenced the evolution of the genetic code and biosynthetic pathways for amino acids.
Collapse
|
9
|
Jurka J, Kołosza Z, Roterman I. Globular proteins, GU wobbling, and the evolution of the genetic code. J Mol Evol 1982; 19:20-7. [PMID: 7161807 DOI: 10.1007/bf02100220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has previously been shown that the formation of GU base pairs in RNA copying processes leads to an accumulation of G and U in both strands of the replicating RNA, which results in a non-random distribution of base triplets. In the present paper, this distribution is calculated, and, using the X2-test, a correlation between the distribution of triplets and the amino acid composition of the evolutionarily conservative interior regions of selected globular proteins is established. It is suggested that GU wobbling in early replication of RNA could have led to the observed amino acid composition of present-day protein interiors. If this hypothesis is correct, then GU wobbling must have been very extensive in the imprecisely replicating RNA, even reaching values close to the critical for stability of its double-helical structure. Implications of the hypothesis both for the evolution of the genetic code and of proteins are discussed.
Collapse
|
10
|
|