Bajpayee AG, Quadir MA, Hammond PT, Grodzinsky AJ. Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term.
Osteoarthritis Cartilage 2016;
24. [PMID:
26211608 PMCID:
PMC4695287 DOI:
10.1016/j.joca.2015.07.010]
[Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE
Avidin exhibits ideal characteristics for targeted intra-cartilage drug delivery: its small size and optimal positive charge enable rapid penetration through full-thickness cartilage and electrostatic binding interactions that give long half-lives in vivo. Here we conjugated Avidin with dexamethasone (DEX) and tested the hypothesis that single-dose Avidin-delivered DEX can ameliorate catabolic effects in cytokine-challenged cartilage relevant to post-traumatic OA.
METHODS
Avidin was covalently conjugated with DEX using fast (ester) and slow, pH-sensitive release (hydrazone) linkers. DEX release kinetics from these conjugates was characterized using (3)H-DEX-Avidin (scintillation counting). Cartilage explants treated with IL-1α were cultured with or without Avidin-DEX conjugates and compared to soluble DEX. Sulfated-glycosaminoglycan (sGAG) loss and biosynthesis rates were measured using DMMB assay and (35)S-incorporation, respectively. Chondrocyte viability was measured using fluorescence staining.
RESULTS
Ester linker released DEX from Avidin significantly faster than hydrazone under physiological buffer conditions. Single dose Avidin-DEX suppressed cytokine-induced sGAG loss over 3-weeks, rescued IL-1α-induced cell death, and restored sGAG synthesis levels without causing cytotoxicity. The two Avidin-DEX conjugates in 1:1 combination (fast:slow) had the most prominent bioactivity compared to single dose soluble-DEX, which had a shorter-lived effect and thus needed continuous replenishment throughout the culture period to ameliorate catabolic effects.
CONCLUSION
Intra-cartilage drug delivery remains inadequate as drugs rapidly clear from the joint, requiring multiple injections or sustained release of high doses in synovial fluid. A single dose of Avidin-conjugated drug enables rapid uptake and sustained delivery inside cartilage at low intratissue doses, and potentially can minimize unwanted drug exposure to other joint tissues.
Collapse