1
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
3
|
Taurine Targets the GluN2b-Containing NMDA Receptor Subtype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:531-44. [PMID: 25833525 DOI: 10.1007/978-3-319-15126-7_43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Menzie J, Prentice H, Wu JY. Neuroprotective Mechanisms of Taurine against Ischemic Stroke. Brain Sci 2013; 3:877-907. [PMID: 24961429 PMCID: PMC4061860 DOI: 10.3390/brainsci3020877] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 02/02/2023] Open
Abstract
Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.
Collapse
Affiliation(s)
- Janet Menzie
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Howard Prentice
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Jang-Yen Wu
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
5
|
Menzie J, Pan C, Prentice H, Wu JY. Taurine and central nervous system disorders. Amino Acids 2012; 46:31-46. [DOI: 10.1007/s00726-012-1382-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/27/2012] [Indexed: 01/28/2023]
|
6
|
Abstract
Taurine demonstrates multiple cellular functions including a central role as a neurotransmitter, as a trophic factor in CNS development, in maintaining the structural integrity of the membrane, in regulating calcium transport and homeostasis, as an osmolyte, as a neuromodulator and as a neuroprotectant. The neurotransmitter properties of taurine are illustrated by its ability to elicit neuronal hyperpolarization, the presence of specific taurine synthesizing enzyme and receptors in the CNS and the presence of a taurine transporter system. Taurine exerts its neuroprotective functions against the glutamate induced excitotoxicity by reducing the glutamate-induced increase of intracellular calcium level, by shifting the ratio of Bcl-2 and Bad ratio in favor of cell survival and by reducing the ER stress. The presence of metabotropic taurine receptors which are negatively coupled to phospholipase C (PLC) signaling pathway through inhibitory G proteins is proposed, and the evidence supporting this notion is also presented.
Collapse
Affiliation(s)
- Jang-Yen Wu
- Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Howard Prentice
- Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Jin H, Wu H, Osterhaus G, Wei J, Davis K, Sha D, Floor E, Hsu CC, Kopke RD, Wu JY. Demonstration of functional coupling between gamma -aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc Natl Acad Sci U S A 2003; 100:4293-8. [PMID: 12634427 PMCID: PMC153086 DOI: 10.1073/pnas.0730698100] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
l-Glutamic acid decarboxylase (GAD) exists as both membrane-associated and soluble forms in the mammalian brain. Here, we propose that there is a functional and structural coupling between the synthesis of gamma-aminobutyric acid (GABA) by membrane-associated GAD and its packaging into synaptic vesicles (SVs) by vesicular GABA transporter (VGAT). This notion is supported by the following observations. First, newly synthesized [(3)H]GABA from [(3)H]l-glutamate by membrane-associated GAD is taken up preferentially over preexisting GABA by using immunoaffinity-purified GABAergic SVs. Second, the activity of SV-associated GAD and VGAT seems to be coupled because inhibition of GAD also decreases VGAT activity. Third, VGAT and SV-associated Ca(2+)calmodulin-dependent kinase II have been found to form a protein complex with GAD. A model is also proposed to link the neuronal stimulation to enhanced synthesis and packaging of GABA into SVs.
Collapse
Affiliation(s)
- Hong Jin
- Departments of Molecular Biosciences and Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- R J Huxtable
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724
| |
Collapse
|
9
|
Kataoka H, Ohishi K, Sumida Y, Ohmori M, Makita M. Gas chromatographic assay for cysteine sulphinate decarboxylase activity in animal tissues. JOURNAL OF CHROMATOGRAPHY 1987; 420:135-40. [PMID: 3667815 DOI: 10.1016/0378-4347(87)80163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- H Kataoka
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Lin CT, Li HZ, WU JY. Immunocytochemical localization of L-glutamate decarboxylase, gamma-aminobutyric acid transaminase, cysteine sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina. Brain Res 1983; 270:273-83. [PMID: 6136312 DOI: 10.1016/0006-8993(83)90601-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regional distribution and cellular location of GABA-synthesizing enzyme, L-glutamate decarboxylase (GAD), GABA degrading enzyme, GABA-transaminase (GABA-T), taurine synthesizing enzyme, cysteine sulfinic acid decarboxylase (CSAD), aspartate and glutamate converting enzyme, aspartate aminotransferase (AAT), and somatostatin have been visualized in the rat retina by immunocytochemical methods. GAD immunoreactivity was found to be concentrated in the inner plexiform layer. A moderate to weak staining of GAD was found in the inner nuclear layer. The distribution of GABA-T immunoreactivity was similar to that of GAD with the exception that a weak to moderate staining of GABA-T was also observed in the outer plexiform layer. CSAD immunoreactivity was seen in every layer with the heaviest staining in the inner plexiform layer, and moderate staining in the inner and outer nuclear layers and ganglion cell layer. AAT immunoreactivity was mostly concentrated in the outer nuclear layer; there was weak staining in the inner nuclear layer and inner and outer plexiform layer. Dense somatostatin staining was seen in the inner plexiform layer and moderate staining was present in the inner nuclear layer, outer plexiform layer and ganglion cell layer. These findings suggest that in rat retina, GABA-containing cells occur in some types of amacrine cells only, while taurine and somatostatin appear in both amacrine and horizontal cells. AAT immunoreactivity was primarily associated with the photoreceptor cells suggesting that AAT may be used as a marker for aspartergic/glutamergic cells and their endings in the central nervous system.
Collapse
|
12
|
Griffith OW. Cysteinesulfinate metabolism. altered partitioning between transamination and decarboxylation following administration of beta-methyleneaspartate. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33025-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Wu JY. Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc Natl Acad Sci U S A 1982; 79:4270-4. [PMID: 6956856 PMCID: PMC346652 DOI: 10.1073/pnas.79.14.4270] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
L-Cysteic and cysteine sulfinic acids decarboxylase (CADCase/CSADCase) and L-glutamic acid decarboxylase (GADCase), the synthetic enzymes for taurine and gamma-aminobutyric acid, respectively, have been purified to homogeneity from bovine brain. Although CADCase/CSADCase and GADCase copurified through various column procedures, these two enzymes can be clearly separated by a hydroxyapatite column. The purification procedures involve ammonium sulfate fractionation, column chromatographies on Sephadex G-200, hydroxyapatite, DEAE-cellulose, and preparative polyacrylamide gel electrophoresis. The Km values for CADCase/CSADCase are 0.22 and 0.18 mM with L-cysteic and cysteine sulfinic acids as substrates, respectively. CADCase/CSADCase cannot use L-glutamate as substrate. GADCase can use L-glutamate, L-cysteic, and cysteine sulfinic acid as substrates with Km values of 1.6, 5.4, and 5.2 mM, respectively. Antibodies against CADCase/CSADCase do not crossreact with GADCase preparations and vice versa. It is concluded that CADCase/CSADCase and GADCase are two distinct enzyme entities and they are responsible for the biosynthesis of taurine and gamma-aminobutyric acid, respectively.
Collapse
|
14
|
Chan-Palay V, Lin CT, Palay S, Yamamoto M, Wu JY. Taurine in the mammalian cerebellum: demonstration by autoradiography with [3H]taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase. Proc Natl Acad Sci U S A 1982; 79:2695-9. [PMID: 6953423 PMCID: PMC346268 DOI: 10.1073/pnas.79.8.2695] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Taurine neurons and their dendrites and axons were visualized in the mammalian cerebellum by autoradiography, after in vivo injections of [(3)H]taurine directly into the cerebellar cortex or deep cerebellar nuclei, and by immunocytochemistry at the light- and electron-microscope levels with antibodies against cysteine-sulfinic acid decarboxylase (CSADCase; L-cysteine-sulfinate carboxylyase, EC 4.1.1.29). Uptake and sequestration of [(3)H]taurine labeled numerous Purkinje cell somata, primary dendrites, and axons; many granule cell somata, dendrites, and parallel fibers; stellate, basket, and Golgi cells; the larger neurons in all deep cerebellar nuclei; the largest neurons in the lateral vestibular nucleus; and, more rarely, Purkinje cell axonal terminals in the neuropil. The label at all sites was diminished by preinjection into the cerebellum of hypotaurine, p-chloromercuriphenylsulfonic acid, or beta-alanine, and was virtually eliminated by strychnine. Immunocytochemical labeling with polyclonal antibodies directed against CSADCase, the enzyme responsible for the synthesis of hypotaurine from cysteine sulfinic acid and taurine from cysteic acid, had a similar distribution. In electron micrographs, immunoreactivity within Purkinje cell somata and dendrites was localized to the Golgi apparatus, the inner plasma membrane, and condensed nonmembranous foci (120 nm in diameter) marked by clumps of peroxidase reaction product. Large Nissl bodies were usually not CSADCase immunoreactive. Numerous immunoreactive granule cells, dendrites, and parallel fibers were recognized. Pretreatment of the animals with colchicine increased the intensity of CSADCase immunoreactivity but did not change the number or distribution of labeled cells. These experiments indicate that taurine is synthesized and involved in a specific uptake process by cerebellar neurons. Neuroglial cells do not synthesize taurine but some neuroglia take up [(3)H]taurine. These findings call for a reexamination of the physiological function of taurine in the cerebellum. A hypothesis is proposed that taurine may be involved in the regulation of calcium, in dendritic spike generation, and in the inhibition of impulse propagation in major Purkinje cell dendrites.
Collapse
|
15
|
Oertel WH, Schmechel DE, Weise VK, Ransom DH, Tappaz ML, Krutzsch HC, Kopin IJ. Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylase in rat liver and brain. Neuroscience 1981; 6:2701-14. [PMID: 7322359 DOI: 10.1016/0306-4522(81)90114-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Staines WA, Benjamin AM, McGeer EG. Cysteinesulfinate decarboxylase activity as an index of taurine-containing structures. J Neurosci Res 1980; 5:555-62. [PMID: 7205993 DOI: 10.1002/jnr.490050610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The distribution of cysteinesulfinic acid decarboxylase (CSAD) activity has been studied for some time on the assumption that this activity was a marker for taurine-containing structures in the CNS. We have found that various in vivo and in vitro treatments of CNS tissues result in parallel changes in the activities of CSAD and glutamic acid decarboxylase (GAD). This suggests that the assay for CSAD is in fact measuring predominantly GAD activity. This hypothesis is tested by lesion, regional distribution, kinetic, inhibitor, and stability studies.
Collapse
|
17
|
Oertel W, Tappaz M, Kopin I, Ransom D, Schmechel D. Production of an antiserum to rat brain glutamate (GAD)/cysteine sulfinate (CSD) decarboxylase. Brain Res Bull 1980. [DOI: 10.1016/0361-9230(80)90117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wu JY, Bird ED, Chen MS, Huang WM. Abnormalities of neurotransmitter enzymes in Huntington's chorea. Neurochem Res 1979; 4:575-86. [PMID: 40150 DOI: 10.1007/bf00964435] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The activities of L-glutamate decarboxylase (GAD), GABA-transaminase (GABA-T), choline acetyltransferase (CAT), and cysteic and cysteinesulfinic acids decarboxylase (CAD/CSAD) in putamen and frontal cortex in both Huntington's chorea and normal tissues were measured. The greatest difference between Huntington's and normal tissues occurred in putamen, in which the apparent CSAD activity was reduced by 85%, while no difference was observed in frontal cortex. GAD, CAD, and CAT activities were also reduced in putamen by 65%, 63%, and 42%, respectively (P less than 0.05). Slight reduction in the enzyme activities was also observed in frontal cortex. However, these reductions appeared to be statistically insignificant (P greater than 0.05 in all cases). GABA-T showed little difference in both putamen and frontal cortex in Huntington's chorea and normal tissues. GAD and GABA-T from Huntington's tissues were indistinguishable from those obtained from normal tissues by double diffusion test and by microcomplement fixation test, which is capable of distinguishing proteins with a single amino acid substitution. Furthermore, the similarity of the complement fixation curves for GAD from Huntington's and normal tissues suggests that the decrease in GAD activity is probably due to the reduction in the number of GAD molecules, presumably through the loss of neurons, and not due to the inhibition or inactivation of GAD activity by toxic substances which might be present in Huntington's chorea.
Collapse
|