1
|
Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors 2022; 48:1203-1216. [PMID: 36370412 DOI: 10.1002/biof.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
- Department of Molecular Medicine, Université de Laval, Québec City, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Lange RT, Lippa SM, Brickell TA, Yeh PH, Ollinger J, Wright M, Driscoll A, Sullivan J, Braatz S, Gartner R, Barnhart E, French LM. Post-Traumatic Stress Disorder Is Associated with Neuropsychological Outcome but Not White Matter Integrity after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:63-73. [PMID: 33395374 DOI: 10.1089/neu.2019.6852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine neuropsychological functioning and white matter integrity, in service members and veterans (SMVs) after mild traumatic brain injury (MTBI), with versus without post-traumatic stress disorder (PTSD). Participants were 116 U.S. military SMVs, prospectively enrolled from the Walter Reed National Military Medical Center (Bethesda, MD), who had sustained an MTBI (n = 86) or an injury without TBI (i.e., Injured Control [IC]; n = 30). Participants completed a battery of neuropsychological measures (neurobehavioral and -cognitive), as well as diffusion tensor imaging (DTI) of the brain, on average 6 years post-injury. Based on diagnostic criteria for PTSD, participants in the MTBI group were classified into two subgroups: MTBI/PTSD-Present (n = 21) and MTBI/PTSD-Absent (n = 65). Participants in the IC group were included only if they were classified as PTSD-Absent. The MTBI/PTSD-Present group had a significantly higher number of self-reported symptoms on all neurobehavioral measures (e.g., depression), and lower scores on more than half of the neurocognitive domains (e.g., processing speed), compared to the MTBI/PTSD-Absent and IC/PTSD-Absent groups. There were no significant group differences for the vast majority of DTI measures, with the exception of a handful of regions (i.e., superior longitudinal fascicle and superior thalamic radiation). These results suggest that there is 1) a strong relationship between PTSD and poor neuropsychological outcome after MTBI and 2) a lack of a relationship between PTSD and white matter integrity, as measured by DTI, after MTBI. Concurrent PTSD and MTBI should be considered a risk factor for poor neuropsychological outcome that requires early intervention.
Collapse
Affiliation(s)
- Rael T Lange
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Tracey A Brickell
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Megan Wright
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Angela Driscoll
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jamie Sullivan
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Samantha Braatz
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Rachel Gartner
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth Barnhart
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Louis M French
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Buda C, Dey I, Balogh N, Horvath LI, Maderspach K, Juhasz M, Yeo YK, Farkas T. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc Natl Acad Sci U S A 1994; 91:8234-8. [PMID: 8058786 PMCID: PMC44580 DOI: 10.1073/pnas.91.17.8234] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A comparison of the structural orders of membranes of a mixed brain-cell population isolated from Cyprinus carpio L. acclimated to either summer (23-25 degrees C) or winter (5 degrees C) revealed a high degree of compensation (80%) for temperature, as assayed by electron spin resonance spectroscopy. The cells rapidly forget their thermal history and adjust the physical properties of the membranes when shifted to the other extreme of temperature either in vivo or in vitro. Phospholipids separated from both types of animals exhibit only around 10% compensation. Arachidonic and docosahexaenoic acids are the major polyunsaturated fatty acids in the brains, but the fatty acid composition of the brain total phospholipids does not vary with adaptation to temperature. Separation of phosphatidylcholines and phosphatidylethanolamines into molecular species revealed a 2- to 3-fold accumulation of 18:1/22:6, 18:1/20:4, and 18:1/18:1 species in the latter; 18:0/22:6 showed an opposite tendency. Molecular species composition of phosphatidylcholines did not vary with the temperature. The same trends of changes were seen with brains of freshwater fish from subtropical (Catla catla L.) or boreal (Acerina cernua) regions. It is concluded that the gross amount of docosahexaenoic acid (22:6) plays only a minor role in adjusting the membrane physical properties to temperature. Factors other than lipids might be involved in the adaptation processes. Due to their specific molecular architecture, molecules such as 18:1/22:6, 18:1/20:4, or 18:1/18:1 phosphatidylethanolamine might prevent the contraction of membranes in the cold and may provide an environment for some other components involved in the temperature regulation of physical properties of nerve cell membranes.
Collapse
Affiliation(s)
- C Buda
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | | | |
Collapse
|