1
|
McDonald TJ, Nijland MJ, Nathanielsz PW. The insulin-like growth factor system and the fetal brain: effects of poor maternal nutrition. Rev Endocr Metab Disord 2007; 8:71-84. [PMID: 17653868 DOI: 10.1007/s11154-007-9044-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) signaling system plays indispensable roles in pre- and post-natal brain growth and development. A large body of studies using both in vivo null mutant and transgenic mice and in vitro neuronal culture techniques indicate that IGF-I acts directly on the brain while IGF-II effects are mediated to a large extent by IGF-II control of placental growth. It appears that all of the mechanisms, except migration, that are involved in normal brain development, e.g., proliferation, apoptosis, maturation and differentiation, are influenced by IGF-I. While IGF system members are produced in the brain, recent reports in post-natal animals indicate that normal brain health and function are dependent upon transfer of circulating IGF-I from the liver and its transfer across the blood brain barrier. Data showing that this phenomenon applies to pre-natal brain growth and development would make an important contribution to fetal physiology. A number of kinase pathways are able to participate in IGF signaling in brain with respect to nutrient restriction; among the most important are the PI3K/AKT, Ras-Raf-MEK-ERK and mTOR-nutrient sensing pathways. Both maternal and fetal IGF-I peripheral plasma concentrations are greatly reduced in nutrient restriction while IGF-II does not appear to be affected. Nutrient restriction also affects IGF binding protein concentrations while effects on the IGF-I receptor appear to vary with the paradigm. Studies on the effects of nutrient restriction on the fetal primate brain in relation to activity of the IGF system are needed to determine the applicability of rodent studies to humans.
Collapse
Affiliation(s)
- Thomas J McDonald
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78253, USA
| | | | | |
Collapse
|
2
|
Shingleton AW, Das J, Vinicius L, Stern DL. The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol 2005; 3:e289. [PMID: 16086608 PMCID: PMC1184592 DOI: 10.1371/journal.pbio.0030289] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 06/17/2005] [Indexed: 11/19/2022] Open
Abstract
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the "critical size" (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.
Collapse
|
3
|
Tsai F, Lin H, Chen W, Chen H, Fan S. Insulin-like growth factor-II gene polymorphism is associated with primary open angle glaucoma. J Clin Lab Anal 2004; 17:259-63. [PMID: 14614750 PMCID: PMC6808164 DOI: 10.1002/jcla.10106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia and ischemia play important roles in the onset and progression of glaucoma. Insulin-like growth factors (IGF) are important neurotrophic agents that respond to hypoxia-ischemia. In this study, we enrolled 60 primary open angle glaucoma (POAG) patients and 104 healthy volunteers from the China Medical College Hospital. Among the polymorphism of IGFs gene, exon 9 Apa I C/T gene polymorphism is the most frequently seen. The polymorphism was observed following polymerase chain reaction based restriction analysis used to to resolve the relationship between IGF-II exon 9 Apa I C/T gene polymorphism and POAG. The distribution of the IGF-II exon 9 gene polymorphism showed statistical differences in the distribution of genotype frequencies between POAG patients and normal controls (P=0.010). The odds ratio of C/C homozygote was 0.266 (95% confidence interval=0.636 approximately 0.111). IGF-II is an important neurotrophic agent and regulates the suffering of POAG. C/C homozygote of IGF-II exon 9 Apa I C/T gene polymorphism is a useful marker of POAG in Chinese.
Collapse
Affiliation(s)
- Fuu‐Jen Tsai
- Department of Medical Genetics and Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Hui‐Ju Lin
- Department of Medical Genetics and Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- Institute of Biology and Life Science Research Center, Tunghai University, Taichung, Taiwan
| | - Wen‐Chi Chen
- Department of Medical Genetics and Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Huey‐Yi Chen
- Department of Medical Genetics and Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Seng‐Sheen Fan
- Institute of Biology and Life Science Research Center, Tunghai University, Taichung, Taiwan
| |
Collapse
|
4
|
El-Khattabi I, Grégoire F, Remacle C, Reusens B. Isocaloric maternal low-protein diet alters IGF-I, IGFBPs, and hepatocyte proliferation in the fetal rat. Am J Physiol Endocrinol Metab 2003; 285:E991-E1000. [PMID: 12902319 DOI: 10.1152/ajpendo.00037.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.
Collapse
Affiliation(s)
- Ilham El-Khattabi
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
5
|
Rind HB, von Bartheld CS. Target-derived cardiotrophin-1 and insulin-like growth factor-I promote neurite growth and survival of developing oculomotor neurons. Mol Cell Neurosci 2002; 19:58-71. [PMID: 11817898 DOI: 10.1006/mcne.2001.1069] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several trophic factors support the survival of developing motoneurons, but it is not known whether these factors act in a retrograde fashion from the motoneuron target muscle or are derived from other sources. Cardiotrophin-1 (CT-1) and the insulin-like growth factors (IGFs) are candidate target-derived motoneuron survival factors as both are expressed in muscle during naturally occurring motoneuron death and, applied systemically, support the survival of developing motoneurons. By using the embryonic chick oculomotor system, we show that CT-1 and IGF-I promote neurite outgrowth from E13-derived oculomotor explants and are retrogradely transported from muscle to nerve cell body in vivo, and injection of CT-1 or IGF-I into eye muscles increases motoneuron survival by 20 and 30%, respectively, as evidenced by calibrated stereological counting techniques. Pharmacological depletion of endogenous target-derived IGF-I in vivo reduces oculomotor neuron survival by up to 30% in a dose-dependent manner. These results significantly extend previous studies using systemic administration of trophic factors and are the first to demonstrate a target-derived retrograde mechanism of developing motoneuron survival factors.
Collapse
Affiliation(s)
- Howard B Rind
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | |
Collapse
|
6
|
Maheshwari HG, Mermelstein S, vonSchlegell AS, Shambaugh GE. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein-calorie malnutrition. Neurochem Res 1997; 22:313-9. [PMID: 9051667 DOI: 10.1023/a:1022447007154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neonatal brain development in the rat is adversely affected by malnutrition. Alterations in tissue binding of IGF-I in the malnourished brain were tested in rat pups from mothers who were fed a 20% protein diet (C) or a 4% protein diet (M) starting from day 21 of gestation and continued throughout suckling. IGF-I binding in both cortex and cerebellum decreased progressively in C and M groups from day 6 to day 13. At day 9, 11, and 13, the binding was significantly greater (p < 0.02) in M compared to C groups. To investigate whether these changes might be related to the alteration in receptor activity, membranes were incubated with 125I-IGF in the presence of excess insulin with or without unlabeled IGF-I. In the absence of insulin, specific IGF-I binding in the M group was increased by 41.8 +/- 13.8% (mean +/- SEM p < 0.05) relative to C group. Insulin produced a consistent but incomplete inhibition of binding in both C and M, of 75% and 67% respectively. In addition, the specific IGF-I binding in the presence of insulin was increased in M group by 70.2 +/- 9.4% relative to C, p < 0.05. To characterize the nature of this binding, cerebral cortical membranes, from both groups, incubated with 125I-IGF-I were cross-linked, and electrophoresed on 6% and 10% SDS-PAGE gels under reducing conditions. Autoradiography of the 6% gel showed two specific bands at 115 kD and 240 kD, consistent with monomeric and dimeric forms of the IGF-I receptor, which were inhibited by excess insulin. In contrast, a 10% gel showed an additional band at 35 kD (IGF-binding protein) that was not inhibited by insulin. In both gels, membrane preparations from the M group showed a heightened intensity of the bands relative to C. The increase in binding protein relative to the receptor suggests a disequilibrium that may limit the availability of exogenous IGF-I to the tissues.
Collapse
Affiliation(s)
- H G Maheshwari
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
7
|
Shambaugh GE, Natarajan N, Davenport ML, Oehler D, Unterman T. Nutritional insult and recovery in the neonatal rat cerebellum: insulin-like growth factors (IGFs) and their binding proteins (IGFBPs). Neurochem Res 1995; 20:475-90. [PMID: 7544447 DOI: 10.1007/bf00973105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alterations in growth caused by neonatal malnutrition may be mediated in part by changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression. Since the neonatal rat cerebellum undergoes a transient, proliferative growth phase in the first two weeks of life, this structure was used to determine whether alterations in circulating and tissue IGFs and IGFBPs may mediate effects of impaired nutrition on the developing central nervous system. Gravid rats were placed on a 4% (protein-calorie deprived, D) or 20% (control, C) protein diets one day prior to delivery and allowed to nurse their pups postpartum. Pups nursing from D mothers received a limited volume of milk and were calorically deprived. Some litters of D pups were foster fed by C mothers from day 8 to day 13 to constitute a recovery group (R). Cerebellar weight, protein, and DNA content in D pups were less than C, p < 0.001. In R pups, DNA and protein returned to C levels by day 13. Between days 6 and 13, serum IGF-I levels rose from 158 +/- 18 to 210 +/- 18 ng/ml in C but remained low in D (47 +/- 6 ng/ml and 25 +/- 3 ng/ml), respectively. In R pups, serum IGF-I partially recovered during this time, and increased from 49 +/- 5 to 110 +/- 7 ng/ml. In cerebellar extracts, IGF-I levels in both C and D were lower at 13 days than at 6 days, p < 0.05 and p < 0.005, respectively. IGF-I levels in C were similar at day 9 and day 11 and were consistently higher than D (11.84 +/- 0.83 vs 8.56 +/- 0.92 ng/g, p < 0.02 C vs D). In R, IGF-I was reduced on day 11, but was similar to C on day 13. Serum IGF-II in D was lower than C, p < 0.01, and did not increase in the R group. Cerebellar IGF-II was virtually undetectable in either group. Immunoprecipitation and ligand blotting studies of serum demonstrated that circulating levels of 32-34 K IGFBPs were increased 3-4 fold in D vs C, reflecting high levels of IGFBP-1 and/or -2, while levels of 24 K IGFBP-4 were lower in D vs C. By contrast, immunoprecipitation and ligand blotting of cerebellar extracts detected IGFBP-2 and -4, but did not detect IGFBP-1. Further, tissue levels of IGFBP-2 were not increased in D vs C, and levels of IGFBP-4 also were not markedly affected by nutritional deprivation. These results suggest that alterations in tissue content and the availability of IGF-I only modestly contributed to the effects of impaired nutrition in the developing central nervous system.
Collapse
Affiliation(s)
- G E Shambaugh
- Research Service, VA Lakeside Medical Center, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
8
|
Shambaugh GE, Unterman TG, Goolsby CL, Natarajan N, Glick RP, Kelly GC, Radosevich JA. Proliferative growth of neonatal cerebellar cells in culture: regulation by male and by maternal serum in late gestation. Neurochem Res 1994; 19:297-309. [PMID: 8177369 DOI: 10.1007/bf00971578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neonatal cerebellar cells were utilized as a model system to examine the effect of 20 day pregnant rat serum on proliferative growth in the CNS. Cells were prepared by mechanical dissociation and cultured as mixed cells or populations enriched in astrocytes or oligodendrocytes. Cell proliferation was estimated by measurement of DNA, protein, and/or mitochondrial reductase activity (MTT). When mixed cells were incubated with 10% male rat serum, both total DNA and protein content increased after 6 days of culture. By contrast, neither of these parameters were altered in cultures incubated with 10% pregnant serum. When cells were incubated with either male or pregnant sera, changes in MTT activity paralleled changes in protein content. Graded concentrations of pregnant serum (5-20%) added to mixed cell cultures produced consistently lower MTT values when compared with identical concentrations of male serum. In addition, MTT activity was diminished in both astrocytes and oligodendrocytes incubated with graded concentrations of pregnant sera when compared with similar concentrations of non-pregnant sera. When potential effects of these different sera on the cell cycle were examined, an increase in the number of cells in the S and G2/M phase was similar, and DNA doubling began to increase at 96 hrs in the presence of either male or 20 day pregnant sera. Thus the inhibition of cell growth by pregnant serum was not likely a result of either cytotoxicity or a delay of entry of cells into the cell cycle. To examine whether this inhibition of cell growth may reflect the effect of pregnant serum on endogenous growth factor production, we tested the production of IGF-II by cerebellar cells. production of an endogenous source of IGF-II was apparent using an RNAse protection assay and was noted using Slot Blot analysis of mRNA extracted at sequential times during cell incubation. Mixed cell cultures also secreted immunologically defined IGF-II. These observations are consistent with the previous demonstration that the fraction of pregnant serum which bound IGF-II also inhibited cell growth. The inhibitory effect of pregnant serum was diminished by preincubating aliquots of sera with graded concentrations of IGF-I prior to adding sera to tissue culture medium. Pregnant serum inhibition was also diminished by prolonging incubation times beyond 6 days. The blunting of pregnant serum inhibition may have been consequent to either a continuing production of endogenous growth factors or to the potential emergence of resistant cells due to prolonged tissue culture incubation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G E Shambaugh
- Research Service, VA Lakeside Medical Center, Chicago, IL 60611
| | | | | | | | | | | | | |
Collapse
|