1
|
Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci 2019; 13:654. [PMID: 31293375 PMCID: PMC6606738 DOI: 10.3389/fnins.2019.00654] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Occupational or environmental exposure to manganese (Mn) can lead to the development of "Manganism," a neurological condition showing certain motor symptoms similar to Parkinson's disease (PD). Like PD, Mn toxicity is seen in the central nervous system mainly affecting nigrostriatal neuronal circuitry and subsequent behavioral and motor impairments. Since the first report of Mn-induced toxicity in 1837, various experimental and epidemiological studies have been conducted to understand this disorder. While early investigations focused on the impact of high concentrations of Mn on the mitochondria and subsequent oxidative stress, current studies have attempted to elucidate the cellular and molecular pathways involved in Mn toxicity. In fact, recent reports suggest the involvement of Mn in the misfolding of proteins such as α-synuclein and amyloid, thus providing credence to the theory that environmental exposure to toxicants can either initiate or propagate neurodegenerative processes by interfering with disease-specific proteins. Besides manganism and PD, Mn has also been implicated in other neurological diseases such as Huntington's and prion diseases. While many reviews have focused on Mn homeostasis, the aim of this review is to concisely synthesize what we know about its effect primarily on the nervous system with respect to its role in protein misfolding, mitochondrial dysfunction, and consequently, neuroinflammation and neurodegeneration. Based on the current evidence, we propose a 'Mn Mechanistic Neurotoxic Triad' comprising (1) mitochondrial dysfunction and oxidative stress, (2) protein trafficking and misfolding, and (3) neuroinflammation.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Eid T, Tu N, Lee TSW, Lai JCK. Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int 2013; 63:670-81. [PMID: 23791709 DOI: 10.1016/j.neuint.2013.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/28/2013] [Accepted: 06/08/2013] [Indexed: 11/20/2022]
Abstract
Astrocytes play a crucial role in regulating and maintaining the extracellular chemical milieu of the central nervous system under physiological conditions. Moreover, proliferation of phenotypically altered astrocytes (a.k.a. reactive astrogliosis) has been associated with many neurologic and psychiatric disorders, including mesial temporal lobe epilepsy (MTLE). Glutamine synthetase (GS), which is found in astrocytes, is the only enzyme known to date that is capable of converting glutamate and ammonia to glutamine in the mammalian brain. This reaction is important, because a continuous supply of glutamine is necessary for the synthesis of glutamate and GABA in neurons. The known stoichiometry of glutamate transport across the astrocyte plasma membrane also suggests that rapid metabolism of intracellular glutamate via GS is a prerequisite for efficient glutamate clearance from the extracellular space. Several studies have indicated that the activity of GS in astrocytes is diminished in several brain disorders, including MTLE. It has been hypothesized that the loss of GS activity in MTLE leads to increased extracellular glutamate concentrations and epileptic seizures. Understanding the mechanisms by which GS is regulated may lead to novel therapeutic approaches to MTLE, which is frequently refractory to antiepileptic drugs. This review discusses several known mechanisms by which GS expression and function are influenced, from transcriptional control to enzyme modification.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | | | | | |
Collapse
|
3
|
Abstract
Manganese (Mn) is an essential trace metal that is pivotal for normal cell function and metabolism. Its homeostasis is tightly regulated; however, the mechanisms of Mn homeostasis are poorly characterized. While a number of proteins such as the divalent metal transporter 1, the transferrin/transferrin receptor complex, the ZIP family metal transporters ZIP-8 and ZIP-14, the secretory pathway calcium ATPases SPCA1 and SPCA2, ATP13A2, and ferroportin have been suggested to play a role in Mn transport, the degree that each of them contributes to Mn homeostasis has still to be determined. The recent discovery of SLC30A10 as a crucial Mn transporter in humans has shed further light on our understanding of Mn transport across the cell. Although essential, Mn is toxic at high concentrations. Mn neurotoxicity has been attributed to impaired dopaminergic (DAergic), glutamatergic and GABAergic transmission, mitochondrial dysfunction, oxidative stress, and neuroinflammation. As a result of preferential accumulation of Mn in the DAergic cells of the basal ganglia, particularly the globus pallidus, Mn toxicity causes extrapyramidal motor dysfunction. Firstly described as "manganism" in miners during the nineteenth century, this movement disorder resembles Parkinson's disease characterized by hypokinesia and postural instability. To date, a variety of acquired causes of brain Mn accumulation can be distinguished from an autosomal recessively inherited disorder of Mn metabolism caused by mutations in the SLC30A10 gene. Both, acquired and inherited hypermanganesemia, lead to Mn deposition in the basal ganglia associated with pathognomonic magnetic resonance imaging appearances of hyperintense basal ganglia on T1-weighted images. Current treatment strategies for Mn toxicity combine chelation therapy to reduce the body Mn load and iron (Fe) supplementation to reduce Mn binding to proteins that interact with both Mn and Fe. This chapter summarizes our current understanding of Mn homeostasis and the mechanisms of Mn toxicity and highlights the clinical disorders associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Karin Tuschl
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, United Kingdom.
| | | | | |
Collapse
|
4
|
Williams BB, Kwakye GF, Wegrzynowicz M, Li D, Aschner M, Erikson KM, Bowman AB. Altered manganese homeostasis and manganese toxicity in a Huntington's disease striatal cell model are not explained by defects in the iron transport system. Toxicol Sci 2010; 117:169-79. [PMID: 20547568 PMCID: PMC2923282 DOI: 10.1093/toxsci/kfq174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/07/2010] [Indexed: 01/19/2023] Open
Abstract
Expansion of a polyglutamine tract in Huntingtin (Htt) leads to the degeneration of medium spiny neurons in Huntington's disease (HD). Furthermore, the HTT gene has been functionally linked to iron (Fe) metabolism, and HD patients show alterations in brain and peripheral Fe homeostasis. Recently, we discovered that expression of mutant HTT is associated with impaired manganese (Mn) uptake following overexposure in a striatal neuronal cell line and mouse model of HD. Here we test the hypothesis that the transferrin receptor (TfR)-mediated Fe uptake pathway is responsible for the HD-associated defects in Mn uptake. Western blot analysis showed that TfR levels are reduced in the mutant STHdh(Q111/Q111) striatal cell line, whereas levels of the Fe and Mn transporter, divalent metal transporter 1 (DMT1), are unchanged. To stress the Fe transport system, we exposed mutant and wild-type cells to elevated Fe(III), which revealed a subtle impairment in net Fe uptake only at the highest Fe exposures. In contrast, the HD mutant line exhibited substantial deficits in net Mn uptake, even under basal conditions. Finally, to functionally evaluate a role for Fe transporters in the Mn uptake deficit, we examined Mn toxicity in the presence of saturating Fe(III) levels. Although Fe(III) exposure decreased Mn neurotoxicity, it did so equally for wild-type and mutant cells. Therefore, although Fe transporters contribute to Mn uptake and toxicity in the striatal cell lines, functional alterations in this pathway are insufficient to explain the strong Mn resistance phenotype of this HD cell model.
Collapse
Affiliation(s)
- B. Blairanne Williams
- Neuroscience Graduate Program
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| | - Gunnar F. Kwakye
- Neuroscience Graduate Program
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| | | | - Daphne Li
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
| | - Michael Aschner
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
- Department of Pediatrics
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina 27402-6107
| | - Aaron B. Bowman
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| |
Collapse
|
5
|
Morello M, Zatta P, Zambenedetti P, Martorana A, D'Angelo V, Melchiorri G, Bernardi G, Sancesario G. Manganese intoxication decreases the expression of manganoproteins in the rat basal ganglia: an immunohistochemical study. Brain Res Bull 2007; 74:406-15. [PMID: 17920449 DOI: 10.1016/j.brainresbull.2007.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/12/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Manganese (Mn) is a cofactor for some metalloprotein enzymes, including Mn-superoxide dismutase (Mn-SOD), a mitochondrial enzyme predominantly localized in neurons, and glutamine synthetase (GS), which is selectively expressed in astroglial cells. The detoxifying effects of GS and Mn-SOD in the brain, involve catabolizing glutamate and scavenging superoxide anions, respectively. Mn intoxication is characterized by impaired function of the basal ganglia. However, it is unclear whether regional central nervous system expression of manganoproteins is also affected. Here, we use immunocytochemistry in the adult rat brain, to examine whether Mn overload selectively affects the expression of GS, Mn-SOD, Cu/Zn-SOD, another component of the SOD family, and glial fibrillary acid protein (GFAP), a specific marker of astrocytes. After chronic Mn overload in drinking water for 13 weeks, we found that the number and immunostaining intensity of GS- and Mn-SOD-positive cells was significantly decreased in the striatum and globus pallidus, but not in the cerebral frontal cortex. In addition, we found that GS enzymatic activity was decreased in the strio-pallidal regions but not in the cerebral cortex of Mn-treated animals. In contrast, Cu/Zn-SOD- and GFAP-immunoreactivity was unchanged in both the cerebral cortex and basal ganglia of Mn-treated rats. Thus, we conclude that in response to chronic Mn overload, a down-regulation of some manganoproteins occurs in neurons and astrocytes of the striatum and globus pallidus, probably reflecting the vulnerability of these regions to Mn toxicity.
Collapse
Affiliation(s)
- M Morello
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Montes S, Alcaraz-Zubeldia M, Muriel P, Rios C. Role of manganese accumulation in increased brain glutamine of the cirrhotic rat. Neurochem Res 2003; 28:911-7. [PMID: 12718445 DOI: 10.1023/a:1023279527545] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cirrhosis promotes increases of both manganese and glutamine in brain. Manganese is a modulator and glutamine is the product of glutamine synthetase. This work studies the relationship between manganese and glutamine synthetase in a model of cirrhosis in the rat. We administered manganese (1 g/L) in the drinking water of sham-operated and bile-duct obstructed rats. We evaluated the manganese and glutamine accumulation and the glutamine synthetase activity in frontal cortex, striatum, and pallidum after 2, 4, and 6 weeks of biliary obstruction or sham surgery. Cirrhotic rats receiving manganese increased their brain content of metal about 400%-600% after 4 weeks of treatment (P < .05) and also remarkably accumulated glutamine through time in the three regions studied (P < .05 at week 6). Interestingly, bile-duct obstructed rats treated with manganese showed no effect on glutamine synthetase activity. Results from this study suggest that manganese induces increases of brain glutamine independently of its synthesis.
Collapse
Affiliation(s)
- Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y, Neurocirugía "Manuel Velasco Suárez", Mexico
| | | | | | | |
Collapse
|
7
|
Tiffany-Castiglion E, Qian Y. Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 2001; 22:577-92. [PMID: 11770879 DOI: 10.1016/s0161-813x(01)00050-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain is an organ that concentrates metals, and these metals are often localized to astroglia. An examination of metal physiology of brain cells, particularly astroglia, offers insights into the developmental neurotoxicity of certain metals, including lead (Pb), mercury (Hg), manganese (Mn), and copper (Cu). Xenobiotic metals probably accumulate in cells by exploiting the normal functions of proteins that transport and handle essential metals. In addition, essential metals may become toxic by accumulating at levels that exceed the normal metal buffering capacity of the cell. This review considers the uptake, accumulation, storage, and release of two xenobiotic metals, Pb and Hg, as well as two essential nutrient metals that are neurotoxic in high amounts, Mn and Cu. Evidence that each metal accumulates in astroglia is evaluated, together with the mechanisms the host cell may invoke to protect itself from cytoxicity.
Collapse
Affiliation(s)
- E Tiffany-Castiglion
- Department of Veterinary Anatomy and Public Health, Center for Environmental and Rural Health, Texas A&M University, College Station 77843-4458, USA.
| | | |
Collapse
|
8
|
Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH. Structure-function relationships of glutamine synthetases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:122-45. [PMID: 10708854 DOI: 10.1016/s0167-4838(99)00270-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a highly regulated enzyme at the core of nitrogen metabolism, glutamine synthetase has been studied intensively. We review structural and functional studies of both bacterial and eukaryotic glutamine synthetases, with emphasis on enzymatic inhibitors.
Collapse
Affiliation(s)
- D Eisenberg
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Departments of Chemistry, Biochemistry and Biological Chemistry, University of California, Los Angeles, 201 MBI, Box 951570, Los Angeles, CA 90095-1570, USA.
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- M Aschner
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157-1083, USA
| |
Collapse
|
10
|
Simpson PB, Russell JT. Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:72-81. [PMID: 9600625 DOI: 10.1016/s0165-0173(97)00056-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that mitochondrial Ca2+ uptake from and release into the cytosol has important consequences for neuronal and glial activity. Ca2+ regulates mitochondrial metabolism, and mitochondrial Ca2+ uptake and release modulate physiological and pathophysiological cytosolic responses. In glial cells, inositol 1,4,5-trisphosphate-dependent Ca2+ responses are faithfully translated into elevations in mitochondrial Ca2+ levels, which modifies cytosolic Ca2+ wave propagation and may activate mitochondrial enzymes. The location of mitochondria within neurones may partially determine their role in Ca2+ signalling. Neuronal death due to NMDA-evoked Ca2+ entry can be delayed by an inhibitor of the mitochondrial permeability transition pore, and mitochondrial dysfunction is being increasingly implicated in a number of neurodegenerative conditions. These findings are illustrative of an emerging realization by neuroscientists of the importance of mitochondrial Ca2+ regulation as a modulator of cellular energetics, endoplasmic reticulum Ca2+ release and neurotoxicity.
Collapse
Affiliation(s)
- P B Simpson
- Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
11
|
Sankaran B, Clemens J, Haley BE. A comparison of changes in nucleotide-protein interactions in the striatal, hippocampus and paramedian cortex after cerebral ischemia and reperfusion: correlations to regional vulnerability. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:237-50. [PMID: 9221922 DOI: 10.1016/s0169-328x(97)00055-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[32P]Azido-purine analogs of ATP and GTP were used to detect changes in phosphorylation and nucleotide binding induced by ischemia and subsequent reperfusion in rat brain striatum, hippocampus and paramedian cortex (PM cortex) tissues. Major changes in phosphorylation were observed for a 130-kDa protein, tentatively identified as the Ca2+ transport ATPase, and calcium/calmodulin-dependent protein kinase II (CaM Kinase II) in all tissues. However, recovery of the phosphorylation of the 130-kDa protein occurred only in the PM cortex on reperfusion. A 200-300% increase in [32P]8N3ATP photoinsertions was observed in the striatum and hippocampus regions for a 43-kDa protein with an isoelectric point of 6.8. This protein was identified as glutamine synthetase (GS) and the increase in binding was found to be due to both increased copy number and activation by Mn2+. An increase in [32P]8N3GTP photoinsertion into a 55-kDa protein, identified as the beta-subunit of tubulin, was found only in the striatum and hippocampus. This indicates the depolymerization of microtubulin in these tissues. These changes correlate to the vulnerability of the striatum and hippocampus to ischemia-induced neuronal death.
Collapse
Affiliation(s)
- B Sankaran
- College of Pharmacy, University of Kentucky, Lexington, USA
| | | | | |
Collapse
|
12
|
Nagelhus EA, Lehmann A, Ottersen OP. Neuronal and glial handling of glutamate and glutamine during hypoosmotic stress: a biochemical and quantitative immunocytochemical analysis using the rat cerebellum as a model. Neuroscience 1996; 72:743-55. [PMID: 9157320 DOI: 10.1016/0306-4522(96)00003-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biochemical and immunocytochemical analyses were performed to resolve how glutamate and glutamine are handled in rat cerebellar cortex in acute hypoosmotic stress. Rats were subjected to a 15-20% reduction in plasma osmolality by intraperitoneal injection of distilled water and then perfusion fixed after 4 or 8 h survival. Some rats in the latter group had their plasma isoosmolality restored by injections of hypertonic saline 4 h prior to perfusion. Water loading caused a pronounced increase in the tissue level of glutamine and an equimolar decrease in the level of glutamate after 4 h survival. The increase in glutamine was transient, as judged by analyses at 8 h survival. Light microscopic immunocytochemistry revealed a pronounced enhancement of the glutamine immunolabelling of glial cells (Golgi epithelial cells and astrocytes), including their perivascular end feet, and quantitative immunogold analyses at the electron microscopic level showed that this enhancement reflected a 50% increase in the intracellular concentration of fixed glutamine. Since water loading was associated with glial swelling this change corresponded to a several-fold increase in the glial content of glutamine. There was a modest reduction in the overall staining intensity for glutamate. The biochemical and immunocytochemical changes were reversed upon restoration of plasma osmolality by hypertonic saline. These findings suggest that hypoosmotic stress causes an increased conversion of glutamate to glutamine in glial cells and that the latter amino acid is subsequently lost from the tissue. The flux of glutamate carbon skeletons through the glutamine synthetase pathway in glia, prior to an efflux to the systemic circulation, may explain how glutamate, and excitatory transmitter and potential toxin, can be used as an organic osmolyte in brain tissue.
Collapse
Affiliation(s)
- E A Nagelhus
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | |
Collapse
|
13
|
Wedler FC, Ley BW. Kinetic, ESR, and trapping evidence for in vivo binding of Mn(II) to glutamine synthetase in brain cells. Neurochem Res 1994; 19:139-44. [PMID: 7910378 DOI: 10.1007/bf00966808] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mn(II) has been proposed as a potential modulator of various important CNS enzymes, particularly glutamine synthetase, which is compartmentalized in the cytoplasm of glia. Previous studies demonstrated that total glial Mn(II) was 50-75 microM, of which 30-40% occurs in the cytoplasm. In the present study, electron spin resonance (ESR) was used to determine that the concentration of free cytoplasmic Mn(II) in cultured chick glial cells is 0.8 (+/- 0.2) microM, very near Kd for the GS-Mn(II) complex. No free Mn(II) could be detected in glial mitochondria. Association of Mn(II) with brain glutamine synthetase (GS) was assessed under in vivo conditions in the presence of millimolar Mg(II) by trapping bound 54Mn(II) ions in the active site with irreversible inhibitors, namely methionine-sulfoximine (MSOX) or specific analogues thereof plus ATP. Ovine brain tissue was lysed directly into buffer containing Mn(II), 3 mM Mg(II), 1 mM MSOX, 1 mM ATP, 200 mM KCl, and 20 mM NaCl. Alternatively, primary cultures of chick glial cells were permeabilized into these inactivation mixtures. alpha-Methyl-D,L-prothionine-S,R-sulfoximine was used to specifically inhibit the mechanistically-related enzyme gamma-glutamyl-cysteine synthetase prior to specific inactivation of GS by alpha-ethyl-D,L-methionine-S,R-sulfoximine. Even in the presence of 2-3 mM Mg(II), with only 5-10 microM Mn(II) present, approximately 20-30% of GS subunits were trapped with bound Mn(II). These results indicate that brain GS exhibits a high degree of specificity for binding Mn(II) over Mg(II) and that Mn(II) binds to GS to a significant extent under in vivo conditions.
Collapse
Affiliation(s)
- F C Wedler
- Dept. of Molecular & Cell Biology, P.M. Althouse Laboratory, Pennsylvania State University, University Park 16802
| | | |
Collapse
|