1
|
Chen CH, Yu WC, Tsao TY, Wang LY, Chen HR, Lin JY, Tsai WY, Cheng SC. Functional and physical interactions between components of the Prp19p-associated complex. Nucleic Acids Res 2002; 30:1029-37. [PMID: 11842115 PMCID: PMC100336 DOI: 10.1093/nar/30.4.1029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Prp19p-associated complex is essential for the yeast pre-mRNA splicing reaction. The complex consists of at least eight protein components, but is not tightly associated with spliceosomal snRNAs. By a combination of genetic and biochemical methods we previously identified four components of this complex, Ntc25p, Ntc85p, Ntc30p and Ntc20p, all of them being novel splicing factors. We have now identified three other components of the complex, Ntc90p, Ntc77p and Ntc31p. These three proteins were also associated with the spliceosome during the splicing reaction in the same manner as Prp19p, concurrently with or immediately after dissociation of U4 snRNA. Two-hybrid analysis revealed that none of these proteins interacted with Prp19p or Ntc25p, but all interacted with Ntc85p. An interaction network between the identified components of the Prp19p-associated complex is demonstrated. Biochemical analysis revealed that Ntc90p, Ntc31p, Ntc30p and Ntc20p form a subcomplex, which, through interacting with Ntc85p and Ntc77p, can associate with Prp19p and Ntc25p to form the Prp19p-associated complex. Genetic analysis suggests that Ntc31p, Ntc30p and Ntc20p may play roles in modulating the function of Ntc90p.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Chen CH, Tsai WY, Chen HR, Wang CH, Cheng SC. Identification and characterization of two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. J Biol Chem 2001; 276:488-94. [PMID: 11018040 DOI: 10.1074/jbc.m006958200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae Prp19p protein is an essential splicing factor and a spliceosomal component. It is not tightly associated with small nuclear RNAs (snRNAs) but is associated with a protein complex consisting of at least eight proteins. We have identified two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. Like other identified components of the complex, both Ntc30p and Ntc20p are associated with the spliceosome in the same manner as Prp19p immediately after or concurrently with dissociation of U4, indicating that the entire complex may bind to the spliceosome as an intact form. Neither Ntc30p nor Ntc20p directly interacts with Prp19p, but both interact with another component of the complex, Ntc85p. Immunoprecipitation analysis revealed an ordered interactions of these components in formation of the Prp19p-associated complex. Although null mutants of NTC30 or NTC20 showed no obvious growth phenotype, deletion of both genes impaired yeast growth resulting in accumulation of precursor mRNA. Extracts prepared from such a strain were defective in pre-mRNA splicing in vitro, but the splicing activity could be restored upon addition of the purified Prp19p-associated complex. These results indicate that Ntc30p and Ntc20p are auxiliary splicing factors the functions of which may be modulating the function of the Prp19p-associated complex.
Collapse
Affiliation(s)
- C H Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai 112, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
3
|
Kim DH, Edwalds-Gilbert G, Ren C, Lin RJ. A mutation in a methionine tRNA gene suppresses the prp2-1 Ts mutation and causes a pre-mRNA splicing defect in Saccharomyces cerevisiae. Genetics 1999; 153:1105-15. [PMID: 10545445 PMCID: PMC1460817 DOI: 10.1093/genetics/153.3.1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The PRP2 gene in Saccharomyces cerevisiae encodes an RNA-dependent ATPase that activates spliceosomes for the first transesterification reaction in pre-mRNA splicing. We have identified a mutation in the elongation methionine tRNA gene EMT1 as a dominant, allele-specific suppressor of the temperature-sensitive prp2-1 mutation. The EMT1-201 mutant suppressed prp2-1 by relieving the splicing block at high temperature. Furthermore, EMT1-201 single mutant cells displayed pre-mRNA splicing and cold-sensitive growth defects at 18 degrees. The mutation in EMT1-201 is located in the anticodon, changing CAT to CAG, which presumably allowed EMT1-201 suppressor tRNA to recognize CUG leucine codons instead of AUG methionine codons. Interestingly, the prp2-1 allele contains a point mutation that changes glycine to aspartate, indicating that EMT1-201 does not act by classical missense suppression. Extra copies of the tRNA(Leu)(UAG) gene rescued the cold sensitivity and in vitro splicing defect of EMT1-201. This study provides the first example in which a mutation in a tRNA gene confers a pre-mRNA processing (prp) phenotype.
Collapse
Affiliation(s)
- D H Kim
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
4
|
Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:5406-11. [PMID: 10318896 PMCID: PMC21872 DOI: 10.1073/pnas.96.10.5406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SNT309 gene was identified via a mutation that causes lethality of cells in combination with a prp19 mutation. We showed previously that Snt309p is a component of the Prp19p-associated complex and that Snt309p, like Prp19p, is associated with the spliceosome immediately after or concomitantly with dissociation of U4 from the spliceosome. We show here that extracts prepared from the SNT309-deleted strain (DeltaSNT309) were defective in splicing but could be complemented by addition of the purified Prp19p-associated complex. Isolation of the Prp19p-associated complex from DeltaSNT309 extracts indicated that the complex was destabilized in the absence of Snt309p and dissociated on affinity chromatography, suggesting a role of Snt309p in stabilization of the Prp19p-associated complex. Addition of the affinity-purified Prp19p-Snt309p binary complex to DeltaSNT309 extracts could reconstitute the Prp19p-associated complex. Genetic analysis further suggests that Snt309p plays a role in modulating interactions of Prp19p with other associated components to facilitate formation of the Prp19p-associated complex. A model for how Snt309p modulates such interactions is proposed.
Collapse
Affiliation(s)
- H R Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan 112
| | | | | | | | | | | | | |
Collapse
|
5
|
Tsai WY, Chow YT, Chen HR, Huang KT, Hong RI, Jan SP, Kuo NY, Tsao TY, Chen CH, Cheng SC. Cef1p is a component of the Prp19p-associated complex and essential for pre-mRNA splicing. J Biol Chem 1999; 274:9455-62. [PMID: 10092627 DOI: 10.1074/jbc.274.14.9455] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Prp19p protein of the budding yeast Saccharomyces cerevisiae is an essential splicing factor and is associated with the spliceosome during the splicing reaction. We have previously shown that Prp19p is not tightly associated with small nuclear ribonucleoprotein particles but is associated with a protein complex consisting of at least eight protein components. By sequencing components of the affinity-purified complex, we have identified Cef1p as a component of the Prp19p-associated complex, Ntc85p. Cef1p could directly interact with Prp19p and was required for pre-mRNA splicing both in vivo and in vitro. The c-Myb DNA binding motif at the amino terminus of Cef1p was required for cellular growth but not for interaction of Cef1p with Prp19p or Cef1p self-interaction. We have identified a small region of 30 amino acid residues near the carboxyl terminus required for both cell viability and protein-protein interactions. Cef1p was associated with the spliceosome in the same manner as Prp19p, i.e. concomitant with or immediately after dissociation of U4. The anti-Cef1p antibody inhibited binding to the spliceosome of Cef1p, Prp19p, and at least three other components of the Prp19p-associated complex, suggesting that the Prp19p-associated complex is likely associated with the spliceosome and functions as an integral complex.
Collapse
Affiliation(s)
- W Y Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University Shih-Pai, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Prp21, a U2-snRNP-associated protein, and Prp24, a U6-snRNP-associated protein, functionally interact during spliceosome assembly in yeast. J Genet 1998. [DOI: 10.1007/bf02966594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chen HR, Jan SP, Tsao TY, Sheu YJ, Banroques J, Cheng SC. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol 1998; 18:2196-204. [PMID: 9528791 PMCID: PMC121462 DOI: 10.1128/mcb.18.4.2196] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y. Tarn, C.-H. Hsu, K.-T. Huang, H.-R. Chen, H.-Y. Kao, K.-R. Lee, and S.-C. Cheng, EMBO J. 13:2421-2431, 1994). To identify proteins in the Prp19p-associated complex, we have isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of prp19, using the ade2-ade3 sectoring system. A novel splicing factor, Snt309p, was identified through such a screen. Although the SNT309 gene was not essential for growth of Saccharomyces cerevisiae under normal conditions, yeast cells containing a null allele of the SNT309 gene were temperature sensitive and accumulated pre-mRNA at the nonpermissive temperature. Far-Western blot analysis revealed direct interaction between Prp19p and Snt309p. Snt309p was shown to be a component of the Prp19p-associated complex by Western blot analysis. Immunoprecipitation studies demonstrated that Snt309p was also a spliceosomal component and associated with the spliceosome in the same manner as Prp19p during spliceosome assembly. These results suggest that the functions of Prp19p and Snt309p in splicing may require coordinate action of these two proteins.
Collapse
Affiliation(s)
- H R Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Kim SH, Lin RJ. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol Cell Biol 1996; 16:6810-9. [PMID: 8943336 PMCID: PMC231684 DOI: 10.1128/mcb.16.12.6810] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to small nuclear RNAs and spliceosomal proteins, ATP hydrolysis is needed for nuclear pre-mRNA splicing. A number of RNA-dependent ATPases which are involved in several distinct ATP-dependent steps in splicing have been identified in Saccharomyces cerevisiae and mammals. These so-called DEAD/H ATPases contain conserved RNA helicase motifs, although RNA unwinding activity has not been demonstrated in purified proteins. Here we report the role of one such DEAH protein, PRP2 of S. cerevisiae, in spliceosome activation. PRP2 bound to a precatalytic spliceosome prior to the first step of splicing. By blocking the activity of a novel splicing factor(s), HP, which was involved in a post-PRP2 step, we found that PRP2 hydrolyzed ATP to cause a change in the spliceosome without the occurrence of splicing. The change was quite dramatic and could account for the previously reported differences between the precatalytic, pre-mRNA-containing spliceosome and the "active," intermediate-containing spliceosome. The post-PRP2-ATP spliceosome was further isolated and could carry out the subsequent reaction apparently in the absence of PRP2 and ATP. We hypothesize that PRP2 functions as a molecular motor, similar to some DExH ATPases in transcription, in the activation of the precatalytic spliceosome for the transesterification reaction.
Collapse
Affiliation(s)
- S H Kim
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010-3000, USA
| | | |
Collapse
|
9
|
Wells SE, Neville M, Haynes M, Wang J, Igel H, Ares M. CUS1, a suppressor of cold-sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145. Genes Dev 1996; 10:220-32. [PMID: 8566755 DOI: 10.1101/gad.10.2.220] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The function of U2 snRNA in splicing is mediated by the proteins of the U2 small nuclear ribonucleoprotein. To identify proteins that influence the function of U2 snRNA we carried out a screen for mutations in Saccharomyces cerevisiae that suppress the cold-sensitive growth defect of a mutation in U2 stem loop IIa, a structure important for the stable association of the U2 snRNP with pre-mRNA. The screen identified three dominant suppressor genes, one of which, CUS1-54, encodes an essential splicing protein required for U2 snRNP addition to the spliceosome. The suppressor protein rescues the spliceosome assembly defect of the mutant U2 in vitro, indicating that suppression is direct. Allele specificity tests show that the suppressor does not simply bypass the requirement for U2 stem loop IIa. Extra copies of wild-type CUS1, but not CUS1-54, suppress the temperature-sensitive prp11 and prp5 mutations, linking CUS1 protein to a subset of other factors required at the same step of spliceosome assembly. CUS1 is homologous to SAP 145, a component of the mammalian U2 snRNP that interacts with pre-mRNA. The yeast genome also encodes a homolog of human SAP 49, a protein that interacts strongly with both SAP 145 and pre-mRNA, underscoring the conservation of U2 snRNP proteins that function in spliceosome assembly.
Collapse
Affiliation(s)
- S E Wells
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | |
Collapse
|
10
|
Teigelkamp S, Whittaker E, Beggs JD. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Res 1995; 23:320-6. [PMID: 7885825 PMCID: PMC306678 DOI: 10.1093/nar/23.3.320] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PRP8 protein of Saccharomyces cerevisiae interacts directly with pre-mRNA in spliceosomes, shown previously by UV-crosslinking. To analyse at which steps of splicing and with which precursor-derived RNA species the interaction(s) take place, UV-crosslinking was combined with PRP8-specific immunoprecipitation and the coprecipitated RNA species were analysed. Specific precipitation of intron-exon 2 and excised intron species was observed. PRP8 protein could be UV-crosslinked to pre-mRNA in PRP2-depleted spliceosomes stalled before initiation of the splicing reaction. Thus, the interaction of PRP8 protein with substrate RNA is established prior to the first transesterification reaction, is maintained during both steps of splicing and continues with the excised intron after completion of the splicing reaction. RNase T1 treatment of spliceosomes revealed that substrate RNA fragments of the 5' splice site region and the branchpoint-3' splice site region could be coimmunoprecipitated with PRP8 specific antibodies, indicating that these are potential sites of interaction for PRP8 protein with substrate RNA. Protection of the branch-point-3' splice site region was detected only after step 1 of splicing. The results allow a first glimpse at the pattern of PRP8 protein-RNA interactions during splicing and provide a fundamental basis for future analysis of these interactions.
Collapse
Affiliation(s)
- S Teigelkamp
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
11
|
|