1
|
Rubiano-Buitrago P, Pradhan S, Aceves AA, Mohammadi S, Paetz C, Rowland HM. Cardenolides in the defensive fluid of adult large milkweed bugs have differential potency on vertebrate and invertebrate predator Na +/K +-ATPases. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231735. [PMID: 39100152 PMCID: PMC11296140 DOI: 10.1098/rsos.231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Aposematic animals rely on diverse secondary metabolites for defence. Various hypotheses, such as competition, life history and multifunctionality, have been posited to explain defence variability and diversity. We investigate the compound selectivity hypothesis using large milkweed bugs, Oncopeltus fasciatus, to determine if distinct cardenolides vary in toxicity to different predators. We quantify cardenolides in the bug's defensive secretions and body tissues and test the individual compounds against predator target sites, the Na+/K+-ATPases, that are predicted to differ in sensitivity. Frugoside, gofruside, glucopyranosyl frugoside and glucopyranosyl gofruside were the dominant cardenolides in the body tissues of the insects, whereas the two monoglycosidic cardenolides-frugoside and gofruside-were the most abundant in the defensive fluid. These monoglycosidic cardenolides were highly toxic (IC50 < 1 μM) to an invertebrate and a sensitive vertebrate enzyme, in comparison to the glucosylated compounds. Gofruside was the weakest inhibitor for a putatively resistant vertebrate predator. Glucopyranosyl calotropin, found in only 60% of bugs, was also an effective inhibitor of sensitive vertebrate enzymes. Our results suggest that the compounds sequestered by O. fasciatus probably provide consistency in protection against a range of predators and underscore the need to consider predator communities in prey defence evolution.
Collapse
Affiliation(s)
- P. Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A. A. Aceves
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Mohammadi
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C. Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - H. M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
2
|
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2022; 28:molecules28010105. [PMID: 36615300 PMCID: PMC9822358 DOI: 10.3390/molecules28010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-β-allopyranosyl coroglaucigenin (1), 3-[4'-O-β-glucopyranosyl-β-allopyranosyl] coroglaucigenin (2), 3'-O-β-glucopyranosyl-15-β-hydroxycalotropin (3), and 3-O-β-glucopyranosyl-12-β-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-β-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| | - Shrikant Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| |
Collapse
|
3
|
Functional evidence supports adaptive plant chemical defense along a geographical cline. Proc Natl Acad Sci U S A 2022; 119:e2205073119. [PMID: 35696564 PMCID: PMC9231628 DOI: 10.1073/pnas.2205073119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.
Collapse
|
4
|
Petschenka G, Halitschke R, Züst T, Roth A, Stiehler S, Tenbusch L, Hartwig C, Gámez JFM, Trusch R, Deckert J, Chalušová K, Vilcinskas A, Exnerová A. Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). Am Nat 2022; 199:E211-E228. [DOI: 10.1086/719196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Scudder GG, Moore LV, Isman MB. Sequestration of cardenolides inOncopeltus fasciatus: Morphological and physiological adaptations. J Chem Ecol 2013; 12:1171-87. [PMID: 24307054 DOI: 10.1007/bf01639003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/1985] [Accepted: 09/23/1985] [Indexed: 11/27/2022]
Abstract
The morphological and physiological adaptations associated with sequestration of cardenolides by the lygaeidOncopeltus fasciatus are summarized and discussed. Cardenolides are efficiently accumulated inO. fasciatus; however, the insect does not appear to suffer any physiological cost as a result of handling large amounts of these plant toxins. Morphological adaptations of the insect include a modified integument composed of a double layered epidermis with an inner layer (the dorsolateral space) specialized for cardenolide storage. Special weak areas of the cuticle are found on both the thorax and abdomen, which rupture when the insect is squeezed, resulting in the cardenolide-rich contents of the inner epidermal layer being released onto the body surface in the form of discrete spherical droplets. Physiological adaptations include selective sequestration of food plant cardenolides, concentration of cardenolides in the dorsolateral space, passive uptake of cardenolides at the gut and dorsolateral space requiring little energy output, reabsorption of secreted cardenolides by the Malpighian tubules, high in vivo tolerance to cardenolides, and the presence of cardenolide-resistant Na,K-ATPases.
Collapse
Affiliation(s)
- G G Scudder
- Department of Zoology, University of British Columbia, V6T 1W5, Vancouver, Canada
| | | | | |
Collapse
|
6
|
|
7
|
Scudder GGE. Threads and serendipity in the life and research of an entomologist. ANNUAL REVIEW OF ENTOMOLOGY 2008; 53:1-17. [PMID: 17583998 DOI: 10.1146/annurev.ento.53.110106.153010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This article presents an account of the development of Geoffrey Scudder's interest in entomology, with an emphasis on threads and serendipity. Early interests in Hemiptera, insect dispersal, evolution, and chemical ecology were followed by research on insect genitalia and seed bug systematics while at Oxford University. A faculty appointment in Canada led to research on water boatmen, water striders, cardenolides, faunistics, biodiversity, and habitat restoration. Since retirement, activities have diversified to include biodiversity mapping, conservation planning, and enhancing raised-bog integrity.
Collapse
Affiliation(s)
- Geoffrey G E Scudder
- Department of Zoology, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
8
|
Renwick JA. The role of cardenolides in a crucifer-insect relationship. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 405:111-21. [PMID: 8910699 DOI: 10.1007/978-1-4613-0413-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J A Renwick
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Glendinning JI. Effectiveness of cardenolides as feeding deterrents toPeromyscus mice. J Chem Ecol 1992; 18:1559-75. [DOI: 10.1007/bf00993229] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1992] [Accepted: 05/01/1992] [Indexed: 11/28/2022]
|
10
|
Martin RA, Lynch SP, Brower LP, Malcolm SB, Van Hook T. Cardenolide content, emetic potency, and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus, and their larval host-plant milkweed,Asclepias humistrata, in Florida. CHEMOECOLOGY 1992. [DOI: 10.1007/bf01261450] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chemical defence in chewing and sucking insect herbivores: Plant-derived cardenolides in the monarch butterfly and oleander aphid. CHEMOECOLOGY 1990. [DOI: 10.1007/bf01240581] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Al-Robai AA, Khoja SM, Al-Fifi ZI. Properties of ouabain-resistant ATPase from the excretory system of Poekilocerus bufonius. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0020-1790(90)90084-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Cardenolide fingerprint of monarch butterflies reared on common milkweed,Asclepias syriaca L. J Chem Ecol 1989; 15:819-53. [DOI: 10.1007/bf01015180] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1987] [Accepted: 03/07/1988] [Indexed: 10/25/2022]
|
14
|
Brattsten LB. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J Chem Ecol 1988; 14:1919-39. [DOI: 10.1007/bf01013486] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1987] [Accepted: 03/15/1988] [Indexed: 10/25/2022]
|