1
|
Kao CY, Cao EC, Wai HL, Cheng SC. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Nucleic Acids Res 2021; 49:9965-9977. [PMID: 34387687 PMCID: PMC8464032 DOI: 10.1093/nar/gkab695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Splicing of pre-mRNA is initiated by binding of U1 to the 5′ splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3′ splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.
Collapse
Affiliation(s)
- Ching-Yang Kao
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - En-Cih Cao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
2
|
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis. Nat Commun 2021; 12:4545. [PMID: 34315864 PMCID: PMC8316553 DOI: 10.1038/s41467-021-24774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5′ splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5′ splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5′ splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3′ splice sites; potentially mediating the rapid splicing of long introns. We know that most splicing reactions take place co-transcriptionally, but how the transcription machinery facilitate splicing of introns is unknown. Here the authors show that the 5′ splice site remains associated with the transcription machinery during intron synthesis through U1 snRNP, providing a basis for the rapid splicing reaction of introns.
Collapse
|
3
|
Abstract
Tight regulation of cellular processes is key to the development of complex organisms but also vital for simpler ones. During evolution, different regulatory systems have emerged, among them RNA-based regulation that is carried out mainly by intramolecular and intermolecular RNA-RNA interactions. However, methods for the transcriptome-wide detection of these interactions were long unavailable. Recently, three publications described high-throughput methods to directly detect RNA duplexes in living cells. This promises to enable in-depth studies of RNA-based regulation and will narrow the gaps in our understanding of RNA structure and function. In this review, we highlight the benefits of these methods and their commonalities and differences and, in particular, point to methodological shortcomings that hamper their wider application. We conclude by presenting ideas for how to overcome these problems and commenting on the prospects we see in this area of research.
Collapse
Affiliation(s)
- Brigitte Schönberger
- Institute of Biochemical Engineering, Computational Biology Group, University of Stuttgart, Stuttgart, 70569, Germany
| | - Christoph Schaal
- Institute of Biochemical Engineering, Computational Biology Group, University of Stuttgart, Stuttgart, 70569, Germany
| | - Richard Schäfer
- Institute of Biochemical Engineering, Computational Biology Group, University of Stuttgart, Stuttgart, 70569, Germany
| | - Björn Voß
- Institute of Biochemical Engineering, Computational Biology Group, University of Stuttgart, Stuttgart, 70569, Germany
| |
Collapse
|
4
|
Liu T, Zhang K, Xu S, Wang Z, Fu H, Tian B, Zheng X, Li W. Detecting RNA-RNA interactions in E. coli using a modified CLASH method. BMC Genomics 2017; 18:343. [PMID: 28468647 PMCID: PMC5415748 DOI: 10.1186/s12864-017-3725-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Background Bacterial small regulatory RNAs (sRNAs) play important roles in sensing environment changes through sRNA-target mRNA interactions. However, the current strategy for detecting sRNA-mRNA interactions usually combines bioinformatics prediction and experimental verification, which is hampered by low prediction accuracy and low-throughput. Additionally, among the 4736 sequenced bacterial genomes, only about 2164 sRNAs from 319 strains have been described. Furthermore, target mRNAs of only 157 sRNAs have been uncovered. Obviously, highly efficient methods were required to detect sRNA-mRNA interactions in the sequenced genomes. This study aimed to apply a modified CLASH (cross-linking, ligation and sequencing hybrids) method to detect RNA-RNA interactions in E. coli, a model bacterial organism. Results Statistically significant interactions were detected in 29 transcript pairs. To the best of our knowledge, 24 pairs were reported for the first time and were novel RNA interactions, including tRNA-tRNA, tRNA-ncRNA (non-coding RNA), tRNA-rRNA, rRNA-mRNA, rRNA-ncRNA, rRNA-rRNA, rRNA-IGT (intergenic transcript), and tRNA-IGT interactions. Conclusions Discovery of novel RNA-RNA interactions in the present study demonstrates that RNA-RNA interactions might be far more complicated than ever expected. New methods may be required to help discover more novel RNA-RNA interactions. The present work describes a high-throughput protocol not only for discovering new RNA interactions, but also directly obtaining base-pairing sequences, which should be useful in assessing RNA structure and interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3725-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Liu
- Beijing Institute of Basic Medical Sciences, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Kaiyu Zhang
- Beijing Institute of Basic Medical Sciences, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Song Xu
- Beijing Institute of Basic Medical Sciences, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Zheng Wang
- Beijing Institute of Basic Medical Sciences, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Hanjiang Fu
- Beijing Institute of Radiation Medicine, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Baolei Tian
- Beijing Institute of Radiation Medicine, Taiping Road 27, Haidian district, Beijing, 100850, China
| | - Xiaofei Zheng
- Beijing Institute of Radiation Medicine, Taiping Road 27, Haidian district, Beijing, 100850, China.
| | - Wuju Li
- Beijing Institute of Basic Medical Sciences, Taiping Road 27, Haidian district, Beijing, 100850, China.
| |
Collapse
|
5
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
6
|
Guo P, Shu Y, Binzel D, Cinier M. Synthesis, conjugation, and labeling of multifunctional pRNA nanoparticles for specific delivery of siRNA, drugs, and other therapeutics to target cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 928:197-219. [PMID: 22956144 DOI: 10.1007/978-1-62703-008-3_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
RNA is unique in nanoscale fabrication due to its amazing diversity of function and structure. RNA nanoparticles can be fabricated with a level of simplicity characteristic of DNA while possessing versatile tertiary structure and catalytic function similar to that of proteins. A large variety of single stranded loops are suitable for inter- and intramolecular interactions, serving as mounting dovetails in self-assembly without the need for external linking dowels. Novel properties of RNA nanoparticles have been explored for treatment and detection of diseases and various other realms. The higher thermodynamic stability, holding of noncanonical base pairing, stronger folding due to base stacking properties, and distinctive in vivo attributes make RNA unique in comparison to DNA. Indeed, the potential application of RNA nanotechnology in therapeutics is an exciting area of research. The use of RNAi in biomedical research has opened up new possibilities to silence or regulate the biological function of individual genes. Small interfering RNA (siRNA) has been extensively explored to genetically manipulate the expression in vitro and in vivo of particular genes identified to play a key role in cancerous or viral diseases. However, the efficient silencing of the desired gene depends upon efficient delivery of siRNA to targeted cells, as well as in vivo stability. In this chapter, we use the bacteriophage phi29 motor pRNA-derived nanocarrier as a polyvalent targeted delivery system, introduce the potential of RNA-based therapeutics using nanobiotechnology or nanotechnology methods with the fabrication and modification of pRNA nanoparticles, and highlight its potential to become a valuable research tool and viable clinical approach for gene therapy.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
7
|
Sasaki S, Onizuka K, Taniguchi Y. The oligodeoxynucleotide probes for the site-specific modification of RNA. Chem Soc Rev 2011; 40:5698-706. [PMID: 21647493 DOI: 10.1039/c1cs15066a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the knowledge of the biological functions of RNA expands, the demand for research tools to investigate intracellular RNA is increasing. Oligonucleotides can be rationally designed for the target RNA sequence, and therefore, have become a reliable platform for the development of specific molecules for RNA. The chemical modification of RNA has a strong impact on RNA research; the fluorescent labeling of RNA is useful to monitor RNA production, processing, relocation in the cell, interaction with other intracellular components and degradation, etc. Chemical modification may affect the RNA function through a variety of pathways, and therefore, would be potentially useful for biological research, therapeutic approach and artificial manipulation of the RNA function. This tutorial review starts with an introduction of the biological relevance of modified RNA, and focuses on the recent progress of the oligodeoxynucleotide probes for the covalent modifications of RNA. The prospects of this new technology are also discussed.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
8
|
Sioud S, Genestie B, Jahouh F, Martin P, Banoub J. Gas-phase fragmentation study of biotin reagents using electrospray ionization tandem mass spectrometry on a quadrupole orthogonal time-of-flight hybrid instrument. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1941-1956. [PMID: 19496066 DOI: 10.1002/rcm.4091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we evaluated, by electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using a quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid instrument, the gas-phase fragmentations of some commercially available biotinyl reagents. The biotin reagents used were: psoralen-BPE 1, p-diazobenzoyl biocytin (DBB) 2, photoreactive biotin 3, biotinyl-hexaethyleneglycol dimer 4, and the sulfo-SBED 5. The results showed that, during ESI-MS and CID-MS/MS analyses, the biotin reagents followed a similar gas-phase fragmentation pattern and the cleavages usually occurred at either end of the spacer arm of the biotin reagents. In general we have observed that the CID-MS/MS fragmentation routes of the five precursor protonated molecules obtained from the biotin linkers 1-5 afforded a series of product ions formed essentially by similar routes. The genesis and the structural identities of all the product ions obtained from the biotin linkers 1-5 have been assigned. All the exact mass assignments of the protonated molecules and the product ions were verified by conducting separate CID-MS/MS analysis of the deuterium-labelled precursor ions.
Collapse
Affiliation(s)
- Salim Sioud
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | | | | | | | | |
Collapse
|
9
|
Small EC, Leggett SR, Winans AA, Staley JP. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 2006; 23:389-99. [PMID: 16885028 PMCID: PMC3777414 DOI: 10.1016/j.molcel.2006.05.043] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/26/2022]
Abstract
Binding of a pre-mRNA substrate triggers spliceosome activation, whereas the release of the mRNA product triggers spliceosome disassembly. The mechanisms that underlie the regulation of these rearrangements remain unclear. We find evidence that the GTPase Snu114p mediates the regulation of spliceosome activation and disassembly. Specifically, both unwinding of U4/U6, required for spliceosome activation, and disassembly of the postsplicing U2/U6.U5.intron complex are repressed by Snu114p bound to GDP and derepressed by Snu114p bound to GTP or nonhydrolyzable GTP analogs. Further, similar to U4/U6 unwinding, spliceosome disassembly requires the DExD/H box ATPase Brr2p. Together, our data define a common mechanism for regulating and executing spliceosome activation and disassembly. Although sequence similarity with EF-G suggests Snu114p functions as a molecular motor, our findings indicate that Snu114p functions as a classic regulatory G protein. We propose that Snu114p serves as a signal-dependent switch that transduces signals to Brr2p to control spliceosome dynamics.
Collapse
Affiliation(s)
- Eliza C. Small
- Department of Biochemistry and Molecular Biology, The University of Chicago Chicago, IL 60637
| | - Stephanie R. Leggett
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
| | - Adrienne A. Winans
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
| | - Jonathan P. Staley
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
- Correspondence: 773-834-5886 (phone); 773-834-9064 (fax)
| |
Collapse
|
10
|
Förch P, Merendino L, Martínez C, Valcárcel J. U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5' splice sites. Biochem J 2003; 372:235-40. [PMID: 12558503 PMCID: PMC1223361 DOI: 10.1042/bj20021202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 01/06/2003] [Accepted: 01/31/2003] [Indexed: 02/02/2023]
Abstract
The splicing factor U2AF(65), U2 small nuclear ribonucleoprotein particle (snRNP) auxillary factor of 65 kDa, binds to pyrimidine-rich sequences at 3' splice sites to recruit U2 snRNP to pre-mRNAs. We report that U2AF(65) can also promote the recruitment of U1 snRNP to weak 5' splice sites that are followed by uridine-rich sequences. The arginine- and serine-rich domain of U2AF(65) is critical for U1 recruitment, and we discuss the role of its RNA-RNA annealing activity in this novel function of U2AF(65).
Collapse
Affiliation(s)
- Patrik Förch
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
11
|
Malca H, Shomron N, Ast G. The U1 snRNP base pairs with the 5' splice site within a penta-snRNP complex. Mol Cell Biol 2003; 23:3442-55. [PMID: 12724403 PMCID: PMC164765 DOI: 10.1128/mcb.23.10.3442-3455.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of the 5' splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5' splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5' splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5' splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5' splice site through base pairing with the 5' end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5' splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5' splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5' splice site in a mammalian preassembled penta-snRNP complex.
Collapse
Affiliation(s)
- Hadar Malca
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
12
|
Guo P. Structure and function of phi29 hexameric RNA that drives the viral DNA packaging motor: review. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:415-72. [PMID: 12206459 DOI: 10.1016/s0079-6603(02)72076-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One notable feature of linear dsDNA viruses is that, during replication, their lengthy genome is squeezed with remarkable velocity into a preformed procapsid and packed into near crystalline density. A molecular motor using ATP as energy accomplishes this energetically unfavorable motion tack. In bacterial virus phi29, an RNA (pRNA) molecule is a vital component of this motor. This 120-base RNA has many novel and distinctive features. It contains strong secondary structure, is tightly folded, and unusually stable. Upon interaction with ion and proteins, it has a knack to adapt numerous conformations to perform versatile function. It can be easily manipulated to form stable homologous monomers, dimers, trimers and hexamers. As a result, many unknown properties of RNA have been and will be unfolded by the study of this extraordinary molecule. This article reviews the structure and function of this pRNA and focuses on novel methods and unique approaches that lead to the illumination of its structure and function.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Hoeprich S, Guo P. Computer modeling of three-dimensional structure of DNA-packaging RNA (pRNA) monomer, dimer, and hexamer of Phi29 DNA packaging motor. J Biol Chem 2002; 277:20794-803. [PMID: 11886855 DOI: 10.1074/jbc.m112061200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A striking common feature in the maturation of all linear double-stranded DNA viruses is that their lengthy genome is translocated with remarkable velocity into the limited space within a preformed protein shell and packaged into near crystalline density. A DNA-translocating motor, powered by ATP hydrolysis, accomplishes this task, which would otherwise be energetically unfavorable. DNA-packaging RNA, pRNA, forms a hexameric complex to serve as a vital component of the DNA translocating motor of bacterial virus Phi29. The sequential action of six pRNA ensures continual function in the DNA translocation process. The Phi29 motor has been assembled with purified components synthesized by chemical or biotechnological approaches and is able to pump the viral DNA into the protein shell in vitro. pRNA dimers are the building blocks of the hexamer. The computer models of the three-dimensional structure of the motor was constructed based on experimental data derived from photoaffinity cross-linking by psoralen, phenphi (cis-Rh(1,10-phenanthroline)(9,10-phenan-threnequinone diimine)Cl(2)(+)), and azidophenacyl; chemical modification and chemical modification interference with dimethyl sulfate, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate, and kethoxal; complementary modification; and nuclease probing by single- and double-stranded specific RNases. The shapes of these computer models are very similar to the published pRNA images of cryo-atomic force microscopy. pRNA hexamer docking with the connector crystal structure reveals a very impressive match with the available biochemical, genetic, and physical data.
Collapse
Affiliation(s)
- Stephen Hoeprich
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
14
|
Labourier E, Adams MD, Rio DC. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. Mol Cell 2001; 8:363-73. [PMID: 11545738 DOI: 10.1016/s1097-2765(01)00311-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
P-element somatic inhibitor (PSI) is a KH domain-containing splicing factor highly expressed in Drosophila somatic tissues. Here we have identified a direct association of PSI with the spliceosomal U1 small nuclear ribonucleoprotein (snRNP) particle in somatic nuclear extracts. This interaction is mediated by highly conserved residues within the PSI C-terminal AB motif and the U1 snRNP-specific 70K protein. Through the AB motif, PSI modulates U1 snRNP binding on the P-element third intron (IVS3) 5' splice site and its upstream exonic regulatory element. Ectopic expression experiments in the Drosophila female germline demonstrate that the AB motif also contributes to IVS3 splicing inhibition in vivo. These data show that the processing of specific target transcripts, such as the P-element mRNA, is regulated by a functional PSI-U1 snRNP interaction in Drosophila.
Collapse
Affiliation(s)
- E Labourier
- Department of Molecular and Cell Biology, University of California, Berkeley, 401 Barker Hall-3204, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
15
|
Zhang Y, Price BD, Tetradis S, Chakrabarti S, Maulik G, Makrigiorgos GM. Reproducible and inexpensive probe preparation for oligonucleotide arrays. Nucleic Acids Res 2001; 29:E66-6. [PMID: 11433042 PMCID: PMC55790 DOI: 10.1093/nar/29.13.e66] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.
Collapse
Affiliation(s)
- Y Zhang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ast G, Pavelitz T, Weiner AM. Sequences upstream of the branch site are required to form helix II between U2 and U6 snRNA in a trans-splicing reaction. Nucleic Acids Res 2001; 29:1741-9. [PMID: 11292847 PMCID: PMC31302 DOI: 10.1093/nar/29.8.1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 02/08/2001] [Accepted: 02/08/2001] [Indexed: 11/13/2022] Open
Abstract
Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem-loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem-loop IIa can participate in spliceosome assembly.
Collapse
Affiliation(s)
- G Ast
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
17
|
Förch P, Puig O, Kedersha N, Martínez C, Granneman S, Séraphin B, Anderson P, Valcárcel J. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 2000; 6:1089-98. [PMID: 11106748 DOI: 10.1016/s1097-2765(00)00107-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here that the apoptosis-promoting protein TIA-1 regulates alternative pre-mRNA splicing of the Drosophila melanogaster gene male-specific-lethal 2 and of the human apoptotic gene Fas. TIA-1 associates selectively with pre-mRNAs that contain 5' splice sites followed by U-rich sequences. TIA-1 binding to the U-rich stretches facilitates 5' splice site recognition by U1 snRNP. This activity is critical for activation of the weak 5' splice site of msl-2 and for modulating the choice of splice site partner in Fas. Structural and functional similarities with the Saccharomyces cerevisiae splicing factor Nam8 suggest striking evolutionary conservation of a mechanism of pre-mRNA splicing regulation that controls biological processes as diverse as meiosis in yeast, dosage compensation in fruit flies, or programmed cell death in humans.
Collapse
Affiliation(s)
- P Förch
- Gene Expression Programme European Molecular Biology Laboratory Meyerhofstrasse 1 D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mohammad T, Chen C, Guo P, Morrison H. Photoinduced cross-linking of RNA by cis-Rh(phen)2Cl2+ and cis-Rh(phen)(phi)Cl2+: a new family of light activatable nucleic acid cross-linking agents. Bioorg Med Chem Lett 1999; 9:1703-8. [PMID: 10397505 DOI: 10.1016/s0960-894x(99)00265-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metal complexes, cis-Rh(phen)2Cl2+ and its more hydrophobic analog cis-Rh(phen)(phi)Cl2+, have been shown to photocross-link the 120-base phi29-encoded pRNA. Primer extension on the cis-Rh(phen)(phi)Cl2(+)-photocross-linked RNA revealed that guanines are responsible for the interstrand cross-links.
Collapse
Affiliation(s)
- T Mohammad
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
19
|
Chen C, Guo P. Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 1997; 71:495-500. [PMID: 8985376 PMCID: PMC191077 DOI: 10.1128/jvi.71.1.495-500.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
20
|
Tarn WY, Steitz JA. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 1996; 84:801-11. [PMID: 8625417 DOI: 10.1016/s0092-8674(00)81057-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A minor class of introns with noncanonical splice (AT-AC) and branch site sequences exists in metazoan protein coding genes. We have established a HeLa cell in vitro system that accurately splices a pre-mRNA substrate containing such an intron from the human P120 gene. Splicing occurs via a lariat intermediate whose branch site A residue is predicted to bulge from a duplex formed with the low abundance U12 small nuclear ribonucleoprotein (snRNP), which we confirm by psoralen cross-linking. Native gel electrophoresis reveals that U11, U12, and U5 snRNPs assemble onto the P120 pre-mRNA to form splicing complexes. Inhibition of P120 splicing by 2'-O-methyl oligonucleotides complementary to U12 or U5 demonstrates that U12 and U5 snRNPs perform essential roles in the AT-AC spliceosome.
Collapse
Affiliation(s)
- W Y Tarn
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
21
|
Skripkin E, Isel C, Marquet R, Ehresmann B, Ehresmann C. Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA3(Lys). Nucleic Acids Res 1996; 24:509-14. [PMID: 8602365 PMCID: PMC145650 DOI: 10.1093/nar/24.3.509] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Initiation of reverse transcription is a crucial step of retroviral infection. In HIV-1, it involves hybridization of the 18 3'-terminal nucleotides of the primer tRNA3(Lys) to the primer binding site (PBS) of the viral RNA. Moreover, additional interactions between the two RNAs were recently evidenced [Isel et al. (1995) J. Mol. Biol. 247, 25269-25272]. To get further information on the topology of the viral RNA/tRNA3(Lys) complex, we used psoralen to induce RNA-RNA crosslinking. A defined intermolecular crosslinked complex was obtained. The crosslinked regions were characterized by RNase T1 digestion followed by bi-dimensional gel electrophoresis. The crosslinked residues (nucleotide mcm5S2U34 and U35 in the anticodon loop of tRNA3(Lys) and UCU154 in the viral RNA upstream of the PBS) were mapped using a retardation method coupled with random hydrolysis. The formation of this crosslink depends on the same elements that are required for the formation of the extended interactions between primer and template RNAs, i.e., the modified bases of the tRNA and a conserved A-rich loop located upstream of the PBS in the genomic RNA. Therefore, the present crosslinking data provide relevant information on the topology of the template/primer binary complex.
Collapse
Affiliation(s)
- E Skripkin
- Unité Propre de Recherche, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- E J Sontheimer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06536-0812
| |
Collapse
|
23
|
Wassarman DA, Steitz JA. A base-pairing interaction between U2 and U6 small nuclear RNAs occurs in > 150S complexes in HeLa cell extracts: implications for the spliceosome assembly pathway. Proc Natl Acad Sci U S A 1993; 90:7139-43. [PMID: 8346227 PMCID: PMC47091 DOI: 10.1073/pnas.90.15.7139] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammalian cells, base pairing between the U2 and U6 small nuclear RNAs is required during pre-RNA splicing. We show by psoralen crosslinking of HeLa nuclear extract that U2.U6 base pairing occurs within abundant ribonucleoprotein complexes that sediment at > 150 S in glycerol gradients. All of the spliceosomal RNAs (U1, U2, U4, U5, and U6) cosediment with these large complexes, suggesting that they may be related to small nuclear RNA-containing structures called speckles/coiled bodies or snurposomes, which have been visualized in mammalian or amphibian nuclei, respectively. In contrast to nuclear extract, S100 extract, which is splicing-defective and lacks the > 150S complexes, does not contain base-paired U2.U6. However, U2.U6 base pairs form in S100 extract that has been made splicing-competent by supplementation with Ser/Arg-rich (SR) proteins, ATP, and an adenovirus splicing substrate. During splicing in supplemented S100 extract, U2.U6 base pairing precedes the appearance of splicing intermediates and occurs initially in an approximately 60S spliceosome complex but also in progressively larger (100-300 S) complexes. Possible functional relationships between the 60S spliceosome and the > 150S complexes are discussed.
Collapse
Affiliation(s)
- D A Wassarman
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536-0812
| | | |
Collapse
|