1
|
Chen C, Tian Y, Wang J, Zhang X, Nan L, Dai P, Gao Y, Zheng S, Liu W, Zhang Y. Testosterone propionate can promote effects of acellular nerve allograft-seeded bone marrow mesenchymal stem cells on repairing canine sciatic nerve. J Tissue Eng Regen Med 2019; 13:1685-1701. [PMID: 31267700 DOI: 10.1002/term.2922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
Peripheral human nerves fail to regenerate across long tube implants (>2 cm), and tissue-engineered nerve grafts represent a promising treatment alternative. The present study aims to investigate the testosterone propionate (TP) repair effect of acellular nerve allograft (ANA) seeded with allogeneic bone marrow mesenchymal stem cells (BMSCs) on 3-cm canine sciatic nerve defect. ANA cellularized with allogeneic BMSCs was implanted to the defect, and TP was injected into the lateral crus of the defected leg. The normal group, the autograft group, the ANA + BMSCs group, the ANA group, and the nongrafted group were used as control. Five months postoperatively, dogs in the TP + ANA + BMSCs group were capable of load bearing, normal walking, and skipping, the autograft group and the ANA + BMSCs group demonstrated nearly the same despite a slight limp. The compound muscle action potentials (CMAPs) on the injured side to the uninjured site in the TP + ANA + BMSCs group were significantly higher than that in the ANA + BMSCs group [CMAPs ratio at A: F(3, 20) = 191.40; 0.02, CMAPs ratio at B: F(3, 20) = 43.27; 0.01]. Masson trichrome staining revealed that in the TP + ANA + BMSCs group, both the diameter ratio of the myelinated nerve and the thickness ratio of regenerated myelin sheath were significantly larger than that in the other groups [the diameter of myelinated nerve fibers: F(3, 56) = 13.45; P < .01, the thickness ratio of regenerated myelin sheath: F(3, 56) = 51.25; P < .01]. In conclusion, TP could significantly increase the repairing effects of the ANA + BMSCs group, and their combination was able to repair 3-cm canine sciatic nerve defect. It therefore represents a promising therapeutic approach.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China.,Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Yuanyuan Tian
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinglu Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Liangliang Nan
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China.,Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Yongping Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuxin Zheng
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Wengang Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Tetzlaff J, Tanzer L, Jones KJ. Exogenous androgen treatment delays the stress response following hamster facial nerve injury. J Neuroendocrinol 2007; 19:383-9. [PMID: 17425613 DOI: 10.1111/j.1365-2826.2007.01538.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following injury or stress of any type, cells undergo a stress response, involving the cessation of general protein synthesis and the up-regulation of heat shock proteins (HSP), which have been implicated in promoting cell survival and repair. In a variety of neuronal injury models, including the hamster facial motoneurone (FMN) model, steroid hormones augment regeneration and are neuroprotective. We have previously shown that facial nerve axotomy induces expression of HSP70 (HSP70) and/or up-regulates constitutively expressed HSP70 (HSC70) mRNA in axotomised hamster FMN and that testosterone propionate (TP) treatment reduces this response. These previous studies were unable to differentiate between HSC70 mRNA and HSP70 mRNA. Therefore, an objective of the present study was to determine which HSP (HSC70 or HSP70) was being up-regulated by axotomy and reduced by TP. Axotomy increased HSC70 protein in axotomised and non-axotomised FMN, relative to untreated baseline hamsters. Interestingly, TP transiently delayed the stress-induced up-regulation of HSC70 protein in axotomised FMN compared to axotomised FMN from non-TP treated controls. A potential explanation for this delay may involve the TP-induced liberation of HSP from the androgen receptor, which would provide the injured cell with an immediately available pool of protective HSP. An hypothesis is presented suggesting that this TP-induced delay of stress-induced HSC70 up-regulation might allow for the diversion of cellular energy away from HSP synthesis and towards the synthesis of proteins required for regeneration and survival.
Collapse
Affiliation(s)
- J Tetzlaff
- Neuroscience Graduate Program, Loyola University Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
3
|
Tanzer L, Jones KJ. Neurotherapeutic action of testosterone on hamster facial nerve regeneration: temporal window of effects. Horm Behav 2004; 45:339-44. [PMID: 15109908 DOI: 10.1016/j.yhbeh.2004.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 11/18/2003] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Neurotherapeutic or neuroprotective effects of gonadal steroids on the injured nervous system have been demonstrated in our laboratory and others. We have previously demonstrated that testosterone propionate (TP) administered systemically at supraphysiological levels accelerates both recovery from facial paralysis and regeneration rates following facial nerve injury in the hamster. Initial temporal studies of steroidal enhancement of functional recovery from facial paralysis established that steroid exposure is necessary during the first postoperative week. Furthermore, accumulated evidence suggests that TP manifests its effects on neuronal regeneration in the immediate postoperative or preregenerative phase by altering the cellular stress response. The purpose of this study was to identify the effective temporal window of TP exposure sufficient to enhance regenerative properties of injured facial motoneurons and functional recovery from facial paralysis induced by facial nerve injury. Adult castrated male hamsters received a right facial nerve crush axotomy at the stylomastoid foramen and were divided into (1) short term, (2) delayed, (3) continuous, and (4) no TP treatment groups. Short term and continuous groups were implanted with 1 subcutaneous (sc) TP capsule each immediately after axotomy, with the capsule removed at 30 min, 2, 4, or 6 h in short-term groups and allowed to remain for the duration of the experiment in the continuous group. In the delayed TP group, 1 sc TP capsule was implanted 6 h after axotomy and allowed to remain for the duration of the experiment. For regeneration rate studies, postoperative times ranged from 4 to 7 days. For the behavioral studies, observations were made for 26 days postaxotomy. The results point to a critical 6-h interval immediately after injury when TP enhances nerve outgrowth distances and augments behavioral recovery.
Collapse
Affiliation(s)
- Lisa Tanzer
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago, Maywood, and Research and Development Service, Hines VA Hospital, Hines, IL, USA
| | | |
Collapse
|