1
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|
2
|
St-Coeur PD, Kinley S, Vogels CM, Decken A, Jr. Morin P, Westcott SA. Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three new iminophosphines containing pinacol-derived boronate esters have been prepared and ligated to dichloridoplatinum(II) fragments. All compounds have been characterized fully, including an X-ray diffraction study carried out for the platinum complex 8, which is derived from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. These three new platinum complexes, along with the non-boron containing control, have been examined for their initial cytotoxic properties against two glioma cell lines using the MTT method.
Collapse
Affiliation(s)
- Patrick-Denis St-Coeur
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Samantha Kinley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Pier Jr. Morin
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
3
|
Uda Y, Zepeda S, Kaneko F, Matsuura Y, Furukawa Y. Adsorption-Induced Conformational Changes of Antifreeze Glycoproteins at the Ice/Water Interface. J Phys Chem B 2007; 111:14355-61. [DOI: 10.1021/jp075429s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yukihiro Uda
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Salvador Zepeda
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Fumitoshi Kaneko
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Yoshiki Matsuura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Yoshinori Furukawa
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
4
|
Xu H, Griffith M, Patten CL, Glick BR. Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 1998. [DOI: 10.1139/w97-126] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An antifreeze protein secreted to the growth medium by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was purified to apparent homogeneity. The purified protein has a molecular mass of 164 ± 15 kDa and an isoelectric point of 5.3, contains both carbohydrate and lipid moieties, and is relatively rich in glycine and alanine. The properties of the purified antifreeze protein are similar to the properties previously reported for bacterial ice-nucleation proteins. In fact, the purified antifreeze protein also displays a low level of ice-nucleation activity. Removal of approximately 92 kDa of carbohydrate from the 164-kDa antifreeze glycoprotein did not noticeably alter the antifreeze activity of the molecule, although it did diminish the ice-nucleation activity. This is the first report of an antifreeze protein that also is active as an ice-nucleation protein.Key words: antifreeze protein, plant growth promoting rhizobacteria, freezing tolerance, ice-nucleation protein.
Collapse
|