1
|
Weixler L, Ikenga NJ, Voorneveld J, Aydin G, Bolte TMHR, Momoh J, Bütepage M, Golzmann A, Lüscher B, Filippov DV, Žaja R, Feijs KLH. Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used. Life Sci Alliance 2022; 6:6/1/e202201455. [PMID: 36368907 PMCID: PMC9652768 DOI: 10.26508/lsa.202201455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
The modification of substrates with ADP-ribose (ADPr) is important in, for example, antiviral immunity and cancer. Recently, several reagents were developed to detect ADP-ribosylation; however, it is unknown whether they recognise ADPr, specific amino acid-ADPr linkages, or ADPr with the surrounding protein backbone. We first optimised methods to prepare extracts containing ADPr-proteins and observe that depending on the amino acid modified, the modification is heatlabile. We tested the reactivity of available reagents with diverse ADP-ribosylated protein and RNA substrates and observed that not all reagents are equally suited for all substrates. Next, we determined cross-reactivity with adenylylated RNA, AMPylated proteins, and metabolites, including NADH, which are detected by some reagents. Lastly, we analysed ADP-ribosylation using confocal microscopy, where depending on the fixation method, either mitochondrion, nucleus, or nucleolus is stained. This study allows future work dissecting the function of ADP-ribosylation in cells, both on protein and on RNA substrates, as we optimised sample preparation methods and have defined the reagents suitable for specific methods and substrates.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Nonso Josephat Ikenga
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Leiden, Netherlands
| | - Gülcan Aydin
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Timo MHR Bolte
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Jeffrey Momoh
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Alexandra Golzmann
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Leiden, Netherlands
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Karla LH Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany,Correspondence: ;
| |
Collapse
|
2
|
Denny JB. Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 2010; 4:293-304. [PMID: 18654638 DOI: 10.2174/157015906778520782] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/16/2006] [Indexed: 01/19/2023] Open
Abstract
GAP-43 is an intracellular growth-associated protein that appears to assist neuronal pathfinding and branching during development and regeneration, and may contribute to presynaptic membrane changes in the adult, leading to the phenomena of neurotransmitter release, endocytosis and synaptic vesicle recycling, long-term potentiation, spatial memory formation, and learning. GAP-43 becomes bound via palmitoylation and the presence of three basic residues to membranes of the early secretory pathway. It is then sorted onto vesicles at the late secretory pathway for fast axonal transport to the growth cone or presynaptic plasma membrane. The palmitate chains do not serve as permanent membrane anchors for GAP-43, because at steady-state most of the GAP-43 in a cell is membrane-bound but is not palmitoylated. Filopodial extension and branching take place when GAP-43 is phosphorylated at Ser-41 by protein kinase C, and this occurs following neurotrophin binding and the activation of numerous small GTPases. GAP-43 has been proposed to cluster the acidic phospholipid phosphatidylinositol 4,5-bisphosphate in plasma membrane rafts. Following GAP-43 phosphorylation, this phospholipid is released to promote local actin filament-membrane attachment. The phosphorylation also releases GAP-43 from calmodulin. The released GAP-43 may then act as a lateral stabilizer of actin filaments. N-terminal fragments of GAP-43, containing 10-20 amino acids, will activate heterotrimeric G proteins, direct GAP-43 to the membrane and lipid rafts, and cause the formation of filopodia, possibly by causing a change in membrane tension. This review will focus on new information regarding GAP-43, including its binding to membranes and its incorporation into lipid rafts, its mechanism of action, and how it affects and is affected by extracellular agents.
Collapse
Affiliation(s)
- John B Denny
- Department of Ophthalmology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| |
Collapse
|
3
|
Gibson NJ, Rössler W, Nighorn AJ, Oland LA, Hildebrand JG, Tolbert LP. Neuron-glia communication via nitric oxide is essential in establishing antennal-lobe structure in Manduca sexta. Dev Biol 2001; 240:326-39. [PMID: 11784067 DOI: 10.1006/dbio.2001.0463] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide synthase recently has been shown to be present in olfactory receptor cells throughout development of the adult antennal (olfactory) lobe of the brain of the moth Manduca sexta. Here, we investigate the possible involvement of nitric oxide (NO) in antennal-lobe morphogenesis. Inhibition of NO signaling with a NO synthase inhibitor or a NO scavenger early in development results in abnormal antennal lobes in which neuropil-associated glia fail to migrate. A more subtle effect is seen in the arborization of dendrites of a serotonin-immunoreactive neuron, which grow beyond their normal range. The effects of NO signaling in these types of cells do not appear to be mediated by activation of soluble guanylyl cyclase to produce cGMP, as these cells do not exhibit cGMP immunoreactivity following NO stimulation and are not affected by infusion of a soluble guanylyl cyclase inhibitor. Treatment with Novobiocin, which blocks ADP-ribosylation of proteins, results in a phenotype similar to those seen with blockade of NO signaling. Thus, axons of olfactory receptor cells appear to trigger glial cell migration and limit arborization of serotonin-immunoreactive neurons via NO signaling. The NO effect may be mediated in part by ADP-ribosylation of target cell proteins.
Collapse
Affiliation(s)
- N J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Schrama LH, Lepperdinger G, Moritz A, van den Engel NK, Marquart A, Oestreicher AB, Eggen BJ, Hage WJ, Richter K, Destrée OH. B-50/growth-associated protein-43, a marker of neural development in Xenopus laevis. Neuroscience 1997; 76:635-52. [PMID: 9015344 DOI: 10.1016/s0306-4522(96)00400-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To study the regulation and function of the growth-associated protein B-50/growth-associated protein-43 (mol. wt 43,000) in Xenopus laevis, B-50/growth-associated protein-43 complementary DNAs were isolated and characterized. The deduced amino acid sequence revealed potential functional domains of Xenopus B-50/growth-associated protein-43 that may be involved in G-protein interaction, membrane-binding, calmodulin-binding and protein kinase C phosphorylation. The expression of B-50/growth-associated protein-43 at the RNA and protein level during development was investigated using the Xenopus complementary DNA and the monoclonal B-50/growth-associated protein-43 antibody NM2. The antibody NM2 recognized the gene product on western blot and in whole-mount immunocytochemistry of Xenopus embryos. Moreover, visualization of the developmentally regulated appearance of B-50/growth-associated protein-43 immunoreactivity showed that this mode of detection may be used to monitor axonogenesis under various experimental conditions. In the adult Xenopus, XB-50/growth-associated protein-43 messenger RNA was shown to be expressed at high levels in brain, spinal cord and eye using northern blotting. The earliest expression detected on northern blot was at developmental stage 13 with poly(A) RNA. By whole-mount immunofluorescence, applying the confocal laser scanning microscope, the protein was first detected in embryos from stage 20, where it was expressed in the developing trigeminal ganglion. Also later in development the expression of the B-50/growth-associated protein-43 gene was restricted to the nervous system in Xenopus, as was previously found for the mouse. In conclusion, we find that XB-50/growth-associated protein-43 is a good marker to study the development of the nervous system in Xenopus laevis.
Collapse
Affiliation(s)
- L H Schrama
- Laboratory for Physiological Chemistry, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sullivan BM, Wong S, Schuman EM. Modification of hippocampal synaptic proteins by nitric oxide-stimulated ADP ribosylation. Learn Mem 1997; 3:414-24. [PMID: 10456108 DOI: 10.1101/lm.3.5.414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide has been shown to be an important neuronal signaling molecule that participates in both behavioral and synaptic plasticity. To better understand the potential mechanisms by which NO regulates synaptic function, the ability of NO to stimulate the modification of synaptic proteins by ADP ribosylation was examined. Two NO donors, sodium nitroprusside and 3-morpholinosydnonimine, stimulated the ADP ribosylation of proteins at apparent molecular masses of 42, 48, 51, 54, and 74 kD in hippocampal synaptosomes. This stimulation was likely owing to the production of NO by the donors; ADP ribosylation was not stimulated by non-NO decomposition products of sodium nitroprusside, and quenching of superoxide anion did not inhibit Sin-1-induced ADP ribosylation. Experiments using NAD+ that was radiolabeled on the nicotinamide moiety demonstrated that the modification of proteins of molecular masses of 30, 33, and 38 kD are not true ADP ribosylation, whereas labeling of the 42-, 48-, 51-, 54-, and 74-kD proteins likely represent ADP ribosylation. Some of the substrates were brain specific (54 and 74 kD), whereas others (42 and 51 kD) were present in multiple nonbrain tissues.
Collapse
Affiliation(s)
- B M Sullivan
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|