1
|
Babišová K, Mentelová L, Geisseová TK, Beňová-Liszeková D, Beňo M, Chase BA, Farkaš R. Apocrine secretion in the salivary glands of Drosophilidae and other dipterans is evolutionarily conserved. Front Cell Dev Biol 2023; 10:1088055. [PMID: 36712974 PMCID: PMC9880899 DOI: 10.3389/fcell.2022.1088055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Apocrine secretion is a transport and secretory mechanism that remains only partially characterized, even though it is evolutionarily conserved among all metazoans, including humans. The excellent genetic model organism Drosophila melanogaster holds promise for elucidating the molecular mechanisms regulating this fundamental metazoan process. Two prerequisites for such investigations are to clearly define an experimental system to investigate apocrine secretion and to understand the evolutionarily and functional contexts in which apocrine secretion arose in that system. To this end, we recently demonstrated that, in D. melanogaster, the prepupal salivary glands utilize apocrine secretion prior to pupation to deliver innate immune and defense components to the exuvial fluid that lies between the metamorphosing pupae and its chitinous case. This finding provided a unique opportunity to appraise how this novel non-canonical and non-vesicular transport and secretory mechanism is employed in different developmental and evolutionary contexts. Here we demonstrate that this apocrine secretion, which is mechanistically and temporarily separated from the exocytotic mechanism used to produce the massive salivary glue secretion (Sgs), is shared across Drosophilidae and two unrelated dipteran species. Screening more than 30 species of Drosophila from divergent habitats across the globe revealed that apocrine secretion is a widespread and evolutionarily conserved cellular mechanism used to produce exuvial fluid. Species with longer larval and prepupal development than D. melanogaster activate apocrine secretion later, while smaller and more rapidly developing species activate it earlier. In some species, apocrine secretion occurs after the secretory material is first concentrated in cytoplasmic structures of unknown origin that we name "collectors." Strikingly, in contrast to the widespread use of apocrine secretion to provide exuvial fluid, not all species use exocytosis to produce the viscid salivary glue secretion that is seen in D. melanogaster. Thus, apocrine secretion is the conserved mechanism used to realize the major function of the salivary gland in fruitflies and related species: it produces the pupal exuvial fluid that provides an active defense against microbial invasion during pupal metamorphosis.
Collapse
Affiliation(s)
- Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Terézia Klaudia Geisseová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bruce A. Chase
- Department of Biology, University of Nebraska, Omaha, NE, United States
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Robert Farkaš,
| |
Collapse
|
2
|
Beňová-Liszeková D, Beňo M, Farkaš R. Fine infrastructure of released and solidified Drosophila larval salivary secretory glue using SEM. BIOINSPIRATION & BIOMIMETICS 2019; 14:055002. [PMID: 31216519 DOI: 10.1088/1748-3190/ab2b2b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Golgi-derived large secretory granules of Drosophila salivary glands (SGs) constitute the components of the salivary glue secretion (Sgs). The Sgs represents a highly special and unique extracellular composite glue matrix that has not yet been identified outside of Cyclorrhaphous Dipterans. For over half a century, the only major and unambiguously documented function of the larval salivary glands was to produce a large amount of mucinous glue-containing secretory granules that, when released during pupariation, serves to affix the freshly formed puparia to a substrate. Besides initial biochemical characterization of the Sgs proteins and cloning of their corresponding Sgs genes, very little is known about other properties and functions of the Sgs glue. We report here observations on the fine SEM-ultrastructure of the Sgs glue released into to the lumen of SGs, and after it has been expectorated and solidified into the external environment. Surprisingly, in contrast to long held expectations, it appears to be a highly structured bioadhesive mass with an internal spongious to trabecular infrastructure, reflecting the state of its hydratation. We also found that in addition to its cementing properties, it is highly efficient at glueing and trapping microorganisms, and thus may serve a potentially very important immune and defense role. High hydration capacity, the speed by which this glue can dry, uniqueness of its protein composition and spongious infrastructure can provide inspiration for development of potential biomimetics that can attach completely different or incompatible surfaces with high efficiency and strength.
Collapse
Affiliation(s)
- Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | | | | |
Collapse
|
3
|
Costantino BFB, Bricker DK, Alexandre K, Shen K, Merriam JR, Antoniewski C, Callender JL, Henrich VC, Presente A, Andres AJ. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genet 2008; 4:e1000102. [PMID: 18566664 PMCID: PMC2413497 DOI: 10.1371/journal.pgen.1000102] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.
Collapse
Affiliation(s)
- Benjamin F. B. Costantino
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Daniel K. Bricker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kelly Alexandre
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kate Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - John R. Merriam
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Jenna L. Callender
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Vincent C. Henrich
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Asaf Presente
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Andrew J. Andres
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
4
|
Kress H, Kunze P, Swida U, Heiser V, Maletz S. Ecdysone-controlled mRNA stability in Drosophila salivary glands: deadenylation-independent degradation of larval glue protein gene message during the larval/prepupal transition. Mol Cell Endocrinol 2001; 182:129-44. [PMID: 11500246 DOI: 10.1016/s0303-7207(01)00494-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyecdysone induces poly(A) shortening and the subsequent degradation of transcripts encoding the larval glue protein LGP-1 in Drosophila virilis late third larval instar salivary glands. Degradation concurs with the transient increase of ribonucleolytic activities in the gland cells. In vitro nuclease assays using crude cytoplasmic extracts of ecdysone-treated salivary glands demonstrate degradation to be deadenylation-independent and that the induced ribonucleolytic activities initiate the degradation of the Lgp-1 transcripts in putative single-stranded loop regions. The independence of degradation from deadenylation is also found in vivo in transformed D. melanogaster carrying a modified Lgp-1 gene.
Collapse
Affiliation(s)
- H Kress
- Institut für Biologie-Genetik, Freie Universität Berlin, Arnimallee 7, D-14 195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
5
|
Lanio W, Swida U, Kress H. Molecular cloning of the Drosophila virilis larval glue protein gene Lgp-3 and its comparative analysis with other Drosophila glue protein genes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:576-80. [PMID: 7918662 DOI: 10.1016/0167-4781(94)90092-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA comprising the larval glue protein gene Lgp-3 of Drosophila virilis was isolated from a lambda genomic and a cDNA library. The transcription start site, two polyadenylation sites and the boundaries of the single intron were determined. An open reading frame encoding 379 amino acids was found. At the DNA level the presence of similar introns and three conserved sequence motifs in the proximal promoters suggest that the gene is related to those of the D. virilis lgp-1 and the D. melanogaster sgs-3, -7 and -8 glue proteins. Their common ancestry is also substantiated by the comparisons of the deduced amino acid sequences and the profiles of hydropathic indices, which reveal striking similarities of the N- and C-termini and of the central repeat domains, although the lengths and the primary structures of the proteins diverged considerably during 60 million years of separate evolution of the two Drosophila species.
Collapse
Affiliation(s)
- W Lanio
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
6
|
Thüroff E, Stöven S, Kress H. Drosophila salivary glands exhibit a regional reprogramming of gene expression during the third larval instar. Mech Dev 1992; 37:81-93. [PMID: 1606022 DOI: 10.1016/0925-4773(92)90017-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In D. virilis salivary glands transcripts of two early gland protein genes, Egp-1 and Egp-2, which encode putative secretory proteins, accumulate in all cells from the first to mid third larval instar. Subsequently the transcripts disappear from the cytoplasm of the corpus cells, but not from their nuclei, where they accumulate at the chromosomal site of their synthesis. In the collum cells, however, Egp-transcripts continue to be detectable in the cytoplasm until the end of larval life. In the salivary glands of transgenic D. melanogaster the presence of a Egp-1/lacZ fusion protein shows the same regional shift as the cytoplasmic Egp-transcripts in D. virilis. We predict that the expression of Egp-genes is related to an early secretory function of the larval salivary glands which is executed by all cells during earlier larval stages but becomes restricted exclusively to the collum cells during the third larval instar.
Collapse
Affiliation(s)
- E Thüroff
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|