1
|
García-Peña P, Ramos M, López JM, Martinez-Murillo R, de Arcas G, Gonzalez-Nieto D. Preclinical examination of early-onset thalamic-cortical seizures after hemispheric stroke. Epilepsia 2023; 64:2499-2514. [PMID: 37277947 DOI: 10.1111/epi.17675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Ischemic stroke is one of the main causes of death and disability worldwide and currently has limited treatment options. Electroencephalography (EEG) signals are significantly affected in stroke patients during the acute stage. In this study, we preclinically characterized the brain electrical rhythms and seizure activity during the hyperacute and late acute phases in a hemispheric stroke model with no reperfusion. METHODS EEG signals and seizures were studied in a model of hemispheric infarction induced by permanent occlusion of the middle cerebral artery (pMCAO), which mimics the clinical condition of stroke patients with permanent ischemia. Electrical brain activity was also examined using a photothrombotic (PT) stroke model. In the PT model, we induced a similar (PT group-1) or smaller (PT group-2) cortical lesion than in the pMCAO model. For all models, we used a nonconsanguineous mouse strain that mimics human diversity and genetic variation. RESULTS The pMCAO hemispheric stroke model exhibited thalamic-origin nonconvulsive seizures during the hyperacute stage that propagated to the thalamus and cortex. The seizures were also accompanied by progressive slowing of the EEG signal during the acute phase, with elevated delta/theta, delta/alpha, and delta/beta ratios. Cortical seizures were also confirmed in the PT stroke model of similar lesions as in the pMCAO model, but not in the PT model of smaller injuries. SIGNIFICANCE In the clinically relevant pMCAO model, poststroke seizures and EEG abnormalities were inferred from recordings of the contralateral hemisphere (noninfarcted hemisphere), emphasizing the reciprocity of interhemispheric connections and that injuries affecting one hemisphere had consequences for the other. Our results recapitulate many of the EEG signal hallmarks seen in stroke patients, thereby validating this specific mouse model for the examination of the mechanistic aspects of brain function and for the exploration of the reversion or suppression of EEG abnormalities in response to neuroprotective and anti-epileptic therapies.
Collapse
Affiliation(s)
- Pablo García-Peña
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Juan M López
- Instrumentation and Applied Acoustics Research Group (I2A2), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Guillermo de Arcas
- Instrumentation and Applied Acoustics Research Group (I2A2), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ingeniería Mecánica, ETSI Industriales, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio de Neuroacústica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
2
|
Valdés-Hernández PA, Bae J, Song Y, Sumiyoshi A, Aubert-Vázquez E, Riera JJ. Validating Non-invasive EEG Source Imaging Using Optimal Electrode Configurations on a Representative Rat Head Model. Brain Topogr 2019; 32:599-624. [PMID: 27026168 DOI: 10.1007/s10548-016-0484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.
Collapse
Affiliation(s)
- Pedro A Valdés-Hernández
- Neuroimaging Department, Cuban Neuroscience Center, Havana, Cuba
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jihye Bae
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Yinchen Song
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.
| |
Collapse
|
3
|
Fleischmann R, Traenkner S, Kraft A, Schmidt S, Schreiber SJ, Brandt SA. Delirium is associated with frequency band specific dysconnectivity in intrinsic connectivity networks: preliminary evidence from a large retrospective pilot case-control study. Pilot Feasibility Stud 2019; 5:2. [PMID: 30631448 PMCID: PMC6322230 DOI: 10.1186/s40814-018-0388-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
Background Pathophysiological concepts in delirium are not sufficient to define objective biomarkers suited to improve clinical approaches. Advances in neuroimaging have revalued electroencephalography (EEG) as a tool to assess oscillatory network activity in neuropsychiatric disease. Yet, research in the field is limited to small populations and largely confined to postoperative delirium, which impedes generalizability of findings and planning of prospective studies in other populations. This study aimed to assess effect sizes of connectivity measures in a large mixed population to demonstrate that there are measurable EEG differences between delirium and control patients. Methods This retrospective pilot study investigated EEG measures as biomarkers in delirium using a case-control design including patients diagnosed with delirium (DSM-5 criteria) and age-/gender-matched controls drawn from a database of 9980 patients (n = 129 and 414, respectively). Assessors were not blinded for groups. Power spectra and connectivity estimates, using the weighted phase log index, of continuous EEG data were compared between conditions. Alterations of information flow through nodes of intrinsic connectivity networks (ICN; default mode, salience, and executive control network) were evaluated in source space using betweenness centrality. This was done frequency specific and network nodes were defined by the multimodal human cerebral cortex parcellation based on human connectome project data. Results Delirium and control patients exhibited distinct EEG power, connectivity, and network characteristics (F(72,540) = 70.3, p < .001; F(493,1079) = 2.69, p < .001; and F(718,2159) = 1.14, p = .007, respectively). Connectivity analyses revealed global alpha and regional beta band disconnectivity that was accompanied by theta band hyperconnectivity in delirious patients. Source and network analyses yielded that these changes are not specific to single intrinsic connectivity networks but affect multiple nodes of networks engaged in level of consciousness, attention, working memory, executive control, and salience detection. Effect sizes were medium to strong in this mixed population of delirious patients. Conclusions We quantified effect sizes for EEG connectivity and network analyses to be expected in delirium. This study implicates that theta band hyperconnectivity and alpha band disconnectivity may be essential mechanisms in the pathophysiology of delirium. Upcoming prospective studies will build upon these results and evaluate the clinical utility of identified EEG measures as therapeutic and prognostic biomarkers. Electronic supplementary material The online version of this article (10.1186/s40814-018-0388-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Fleischmann
- 1Vision and Motor System Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,2Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Steffi Traenkner
- 1Vision and Motor System Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antje Kraft
- 1Vision and Motor System Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sein Schmidt
- 1Vision and Motor System Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephan J Schreiber
- 3Department of Neurology, Asklepios Fachklinikum Brandenburg, 14772 Brandenburg an der Havel, Brandenburg Germany
| | - Stephan A Brandt
- 1Vision and Motor System Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
Milner R, Lewandowska M, Ganc M, Włodarczyk E, Grudzień D, Skarżyński H. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study. Front Neurosci 2018; 12:292. [PMID: 29867312 PMCID: PMC5958225 DOI: 10.3389/fnins.2018.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/13/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.
Collapse
Affiliation(s)
- Rafał Milner
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Lewandowska
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Elżbieta Włodarczyk
- Audiology and Phoniatrics Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Diana Grudzień
- Rehabilitation Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
5
|
Boussen S, Velly L, Benar C, Metellus P, Bruder N, Trébuchon A. In Vivo Tumour Mapping Using Electrocorticography Alterations During Awake Brain Surgery: A Pilot Study. Brain Topogr 2016; 29:766-82. [PMID: 27324381 DOI: 10.1007/s10548-016-0502-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
During awake brain surgery for tumour resection, in situ EEG recording (ECoG) is used to identify eloquent areas surrounding the tumour. We used the ECoG setup to record the electrical activity of cortical and subcortical tumours and then performed frequency and connectivity analyses in order to identify ECoG impairments and map tumours. We selected 16 patients with cortical (8) and subcortical (8) tumours undergoing awake brain surgery. For each patient, we computed the spectral content of tumoural and healthy areas in each frequency band. We computed connectivity of each electrode using connectivity markers (linear and non-linear correlations, phase-locking and coherence). We performed comparisons between healthy and tumour electrodes. The ECoG alterations were used to implement automated classification of the electrodes using clustering or neural network algorithms. ECoG alterations were used to image cortical tumours.Cortical tumours were found to profoundly alter all frequency contents (normalized and absolute power), with an increase in the δ activity and a decreases for the other bands (P < 0.05). Cortical tumour electrodes showed high level of connectivity compared to surrounding electrodes (all markers, P < 0.05). For subcortical tumours, a relative decrease in the γ1 band and in the alpha band in absolute amplitude (P < 0.05) were the only abnormalities. The neural network algorithm classification had a good performance: 93.6 % of the electrodes were classified adequately on a test subject. We found significant spectral and connectivity ECoG changes for cortical tumours, which allowed tumour recognition. Artificial neural algorithm pattern recognition seems promising for electrode classification in awake tumour surgery.
Collapse
Affiliation(s)
- Salah Boussen
- Department of Anaesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Cedex 5 Marseille, France. .,IFSTTAR, LBA UMR T 24, Aix Marseille Université, 13916, Marseille, France.
| | - Lionel Velly
- Department of Anaesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Cedex 5 Marseille, France
| | - Christian Benar
- Institut de Neurosciences des Systèmes - Inserm UMR1106, Aix-Marseille Université Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Metellus
- Neurosurgery Department, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France.,CRO2 (oncology and oncopharmacology research center) INSERM UMRS 911, Aix Marseille Université, Marseille, France
| | - Nicolas Bruder
- Department of Anaesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Cedex 5 Marseille, France
| | - Agnès Trébuchon
- Institut de Neurosciences des Systèmes - Inserm UMR1106, Aix-Marseille Université Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France.,Clinical Electrophysiology Department, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
| |
Collapse
|
6
|
Chu RKO, Braun AR, Meltzer JA. MEG-based detection and localization of perilesional dysfunction in chronic stroke. NEUROIMAGE-CLINICAL 2015; 8:157-69. [PMID: 26106540 PMCID: PMC4473381 DOI: 10.1016/j.nicl.2015.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/13/2022]
Abstract
Post-stroke impairment is associated not only with structural lesions, but also with dysfunction in surviving perilesional tissue. Previous studies using equivalent current dipole source localization of MEG/EEG signals have demonstrated a preponderance of slow-wave activity localized to perilesional areas. Recent studies have also demonstrated the utility of nonlinear analyses such as multiscale entropy (MSE) for quantifying neuronal dysfunction in a wide range of pathologies. The current study utilized beamformer-based reconstruction of signals in source space to compare spectral and nonlinear measures of electrical activity in perilesional and healthy cortices. Data were collected from chronic stroke patients and healthy controls, both young and elderly. We assessed relative power in the delta (1–4 Hz), theta (4–7 Hz), alpha (8–12 Hz) and beta (15–30 Hz) frequency bands, and also measured the nonlinear complexity of electrical activity using MSE. Perilesional tissue exhibited a general slowing of the power spectrum (increased delta/theta, decreased beta) as well as a reduction in MSE. All measures tested were similarly sensitive to changes in the posterior perilesional regions, but anterior perilesional dysfunction was detected better by MSE and beta power. The findings also suggest that MSE is specifically sensitive to electrophysiological dysfunction in perilesional tissue, while spectral measures were additionally affected by an increase in rolandic beta power with advanced age. Furthermore, perilesional electrophysiological abnormalities in the left hemisphere were correlated with the degree of language task-induced activation in the right hemisphere. Finally, we demonstrate that single subject spectral and nonlinear analyses can identify dysfunctional perilesional regions within individual patients that may be ideal targets for interventions with noninvasive brain stimulation. We assessed the spontaneous MEG activity of perilesional tissue in stroke. We observed perilesional spectral slowing and reduced signal complexity. We demonstrate a method to identify dysfunctional tissue within a single subject.
Collapse
Affiliation(s)
- Ron K O Chu
- University of Toronto, Department of Psychology, 100 St. George Street, 4th Floor, Sidney Smith Hall, Toronto, ON M5S 3G3, Canada ; Rotman Research Institute, Baycrest Centre, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
| | - Allen R Braun
- Language Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jed A Meltzer
- University of Toronto, Department of Psychology, 100 St. George Street, 4th Floor, Sidney Smith Hall, Toronto, ON M5S 3G3, Canada ; University of Toronto, Department of Speech-Language Pathology, 160-500 University Avenue, Toronto, ON M5G 1V7, Canada ; Rotman Research Institute, Baycrest Centre, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada ; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, 600 Peter Morand Cres., Suite 201, Ottawa, ON K1G 5Z3, Canada
| |
Collapse
|
7
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
8
|
EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2011; 36:677-95. [PMID: 22020231 DOI: 10.1016/j.neubiorev.2011.10.002] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.
Collapse
|
9
|
Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 2008; 5:25. [PMID: 18990257 PMCID: PMC2605581 DOI: 10.1186/1743-0003-5-25] [Citation(s) in RCA: 534] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/07/2008] [Indexed: 11/21/2022] Open
Abstract
In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF), SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF, for different noise levels and different simulated source depths has shown that for single source localization, regularized sLORETA gives the best solution in terms of both localization error and ghost sources. Furthermore the computationally intensive solution given by SLF was not found to give any additional benefits under such simulated conditions.
Collapse
Affiliation(s)
| | - Tracey Cassar
- iBERG, University of Malta, Malta
- Department of Systems and Control Engineering, Faculty of Engineering, University
of Malta, Malta
| | | | - Kenneth P Camilleri
- iBERG, University of Malta, Malta
- Department of Systems and Control Engineering, Faculty of Engineering, University
of Malta, Malta
| | - Simon G Fabri
- iBERG, University of Malta, Malta
- Department of Systems and Control Engineering, Faculty of Engineering, University
of Malta, Malta
| | - Michalis Zervakis
- Department of Electronic and Computer Engineering, Technical University of Crete,
Crete
| | - Petros Xanthopoulos
- Department of Electronic and Computer Engineering, Technical University of Crete,
Crete
| | - Vangelis Sakkalis
- Department of Electronic and Computer Engineering, Technical University of Crete,
Crete
- Institute of Computer Science, Foundation for Research and Technology, Heraklion
71110, Greece
| | - Bart Vanrumste
- ESAT, KU Leuven, Belgium
- MOBILAB, IBW, K.H. Kempen, Geel, Belgium
| |
Collapse
|
10
|
Oshino S, Kato A, Wakayama A, Taniguchi M, Hirata M, Yoshimine T. Magnetoencephalographic analysis of cortical oscillatory activity in patients with brain tumors: Synthetic aperture magnetometry (SAM) functional imaging of delta band activity. Neuroimage 2007; 34:957-64. [PMID: 17175174 DOI: 10.1016/j.neuroimage.2006.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/09/2006] [Accepted: 08/13/2006] [Indexed: 11/26/2022] Open
Abstract
Abnormal focal slow wave activity on electroencephalography and magnetoencephalography (MEG) is often seen in patients with various brain pathologies and MEG is capable of localizing cortical oscillatory activity with enhanced accuracy. In addition, MEG with synthetic aperture magnetometry (SAM) can depict changes in cortical oscillatory activity tomographically. Using SAM, we recorded cortical rhythms in patients with a brain tumor and evaluated the tomographic appearance of focal slow wave activity in relation to clinical signs and symptoms. Spontaneous MEG recordings were obtained in 15 patients with brain tumors. Statistically-determined power distributions in the delta-, theta-, and alpha-frequency bands were displayed tomographically and overlaid on individual magnetic resonance images. The location, strength and volume of enhanced activity were analyzed. Delta and theta band activities were significantly more intense in the cortex adjacent to tumors and in the surrounding edematous cortical areas than in other portions of the cortex. In 13 of the 15 patients, spatial distribution of enhanced focal delta activity coincided with the area responsible for the presenting signs and symptoms. Volumetric analysis revealed that emergence of tumor-related focal delta band activity in the cortex adjacent to a tumor, or with peritumoral edema, was greater for intra-axial tumors involving subcortical fibers than for extra-axial tumors. Patients with an increased volume of enhanced delta activity exhibited poor recovery of function in the early postoperative period. It is concluded that SAM imaging of focal delta activity can reveal functional alterations in cortical activity in patients with brain tumors and is useful for assessing cortical states associated with the existing pathology.
Collapse
Affiliation(s)
- Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamdaoka, Suita, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
OBJECTIVE Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brain's large-scale neuronal circuits. However, most EEG applications fail to capitalize on all of the data's available information, particularly that concerning the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain at every moment in time can be accurately localized. METHODS AND RESULTS Here, we review the different EEG source localization procedures applied during the last two decades. Additionally, we detail the importance of those procedures preceding and following source estimation that are intimately linked to a successful, reliable result. We discuss (1) the number and positioning of electrodes, (2) the varieties of inverse solution models and algorithms, (3) the integration of EEG source estimations with MRI data, (4) the integration of time and frequency in source imaging, and (5) the statistical analysis of inverse solution results. CONCLUSIONS AND SIGNIFICANCE We show that modern EEG source imaging simultaneously details the temporal and spatial dimensions of brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Laboratory, Neurology Clinic, University Hospital of Geneva, 24 rue Micheli-du-Crest, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Butz M, Gross J, Timmermann L, Moll M, Freund HJ, Witte OW, Schnitzler A. Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett 2004; 355:93-6. [PMID: 14729243 DOI: 10.1016/j.neulet.2003.10.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the surrounding of focal ischemic brain lesions dysfunctional neuronal zones emerge often resulting in pathological oscillatory activity. Using whole-head magnetoencephalography we recorded brain activity during rest in 23 patients with ischemic cortical lesions to find out whether we can localise and characterise low-frequency oscillatory activity. We measured patients at different times after stroke and partly in a follow-up approach to determine the time course of slow-wave activity. Using the analysis tool Dynamic Imaging of Coherent Sources we computed tomographic maps of oscillatory power in the delta-band (0.5-3 Hz). Fifteen of 23 patients with cortical strokes showed delta-activity, which was localised in an area not more than 2 cm away from the lesion. We found this perilesional low-frequency activity in the acute as well as in the chronic stage of stroke. Follow-up measurements of individual patients revealed persistence of perilesional low-frequency activity for months and even years. No consistent relation between perilesional activity and clinical symptoms was observed. Our results indicate that perilesional delta activity is common after ischemic cortical stroke. However, the functional significance remains to be elucidated.
Collapse
Affiliation(s)
- Markus Butz
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
There is increasing interest in psychiatric assessment using neurophysiologic tools such as electroencephalography (EEG), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). This is because these technologies have good temporal resolution, are relatively noninvasive, and (with the exception of MEG) are economical. Many different experimental paradigms and analysis techniques for the assessment of psychiatric patients involving these technologies are reviewed including conventional quantitative electroencephalography (QEEG), EEG cordance, low-resolution electromagnetic tomography (LORETA), frontal midline theta, midlatency auditory evoked potentials (P50, N100, P300), loudness dependency of the auditory evoked potential (LDAEP), mismatch negativity (MMN), contingent negative variation (CNV), and transcranial magnetic stimulation (TMS). Many of these neurophysiologic stimulus paradigms hold the promise of improving psychiatric patient care by improving diagnostic precision, predicting treatment response, and providing new phenotypes for genetic studies. Large cooperative multisite studies need to be designed to test and validate a few of these paradigms so that they might find use in routine clinical practice.
Collapse
Affiliation(s)
- J J Halford
- Department of Medicine, Neurology Division, Box 3678, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
|
15
|
John ER, Prichep LS, Kox W, Valdés-Sosa P, Bosch-Bayard J, Aubert E, Tom M, di Michele F, Gugino LD, diMichele F. Invariant reversible QEEG effects of anesthetics. Conscious Cogn 2001; 10:165-83. [PMID: 11414713 DOI: 10.1006/ccog.2001.0507] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Continuous recordings of brain electrical activity were obtained from a group of 176 patients throughout surgical procedures using general anesthesia. Artifact-free data from the 19 electrodes of the International 10/20 System were subjected to quantitative analysis of the electroencephalogram (QEEG). Induction was variously accomplished with etomidate, propofol or thiopental. Anesthesia was maintained throughout the procedures by isoflurane, desflurane or sevoflurane (N = 68), total intravenous anesthesia using propofol (N = 49), or nitrous oxide plus narcotics (N = 59). A set of QEEG measures were found which reversibly displayed high heterogeneity of variance between four states as follows: (1) during induction; (2) just after loss of consciousness (LOC); (3) just before return of consciousness (ROC); (4) just after ROC. Homogeneity of variance across all agents within states was found. Topographic statistical probability images were compared between states. At LOC, power increased in all frequency bands in the power spectrum with the exception of a decrease in gamma activity, and there was a marked anteriorization of power. Additionally, a significant change occurred in hemispheric relationships, with prefrontal and frontal regions of each hemisphere becoming more closely coupled, and anterior and posterior regions on each hemisphere, as well as homologous regions between the two hemispheres, uncoupling. All of these changes reversed upon ROC. Variable resolution electromagnetic tomography (VARETA) was performed to localize salient features of power anteriorization in three dimensions. A common set of neuroanatomical regions appeared to be the locus of the most probable generators of the observed EEG changes.
Collapse
Affiliation(s)
- E R John
- Department of Psychiatry, Brain Research Laboratories, New York University School of Medicine, 550 First Avenue, New York, New York, 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fernández-Bouzas A, Harmony T, Fernández T, Silva-Pereyra J, Valdés P, Bosch J, Aubert E, Casián G, Otero Ojeda G, Ricardo J, Hernández-Ballesteros A, Santiago E. Sources of abnormal EEG activity in brain infarctions. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2000; 31:165-9. [PMID: 11056837 DOI: 10.1177/155005940003100403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
EEGs from 16 patients with stroke in three different stages of evolution were recorded. EEG sources were calculated every 0.39 Hz by frequency domain VARETA. The main source was within the delta band in 2 out of 4 chronic patients, and in 67% of the patients in the acute or subacute stages when edema (cytotoxic or vasogenic) was present. Moreover, all patients showed abnormal activity in the theta band. Sources of abnormal activity in cortical or corticosubcortical infarcts were located in the cortex, surrounding the lesion. At the site of the infarct, a decrease of EEG power was observed. Sources of abnormal theta power coincided with edema and/or ischemic penumbra.
Collapse
Affiliation(s)
- A Fernández-Bouzas
- ENEP Iziacala, Universidad Nacional Autónoma de México (UNAM), D.F., Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fernández-Bouzas A, Harmony T, Bosch J, Aubert E, Fernández T, Valdés P, Silva J, Marosi E, Martínez-López M, Casián G. Sources of abnormal EEG activity in the presence of brain lesions. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 1999; 30:46-52. [PMID: 10358783 DOI: 10.1177/155005949903000205] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes.
Collapse
|
18
|
Luccas FJ, Anghinah R, Braga NI, Fonseca LC, Frochtengarten ML, Jorge MS, Kanda PA. [Guidelines for recording/analyzing quantitative EEG and evoked potentials. Part II: Clinical aspects]. ARQUIVOS DE NEURO-PSIQUIATRIA 1999; 57:132-46. [PMID: 10347740 DOI: 10.1590/s0004-282x1999000100026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Digital EEG (DEEG) and quantitative EEG (QEEG) are recently developed tools present in many clinical situations. Besides showing didactic and research utility, they may also have a clinical role. Although a considerable amount of scientific literature has been published related to QEEG, many controversies still subsist regarding its clinical utilization. Clinical applications are: 1. DEEG is already an established substitute for conventional EEG, representing a clear technical advance. 2. Certain QEEG techniques are an established addition to DEEG for: 2a) screening for epileptic spikes or seizures in long-term recordings; 2b) Operation room and intensive care unit EEG monitoring. 3. Certain QEEG techniques are considered possible useful additions to DEEG: 3a) topographic voltage and dipole analysis in epilepsy evaluations; 3b) frequency analysis in cerebrovascular disease and dementia, mostly when other tests have been inconclusive. 4. QEEG remains investigational for clinical use in postconcussion syndrome, learning disability, attention disorders, schizophrenia, depression, alcoholism and drug abuse. EEG brain mapping and other QEEG techniques should be clinically used only by physicians highly skilled in clinical EEG interpretation and as an adjunct to traditional EEG work.
Collapse
Affiliation(s)
- F J Luccas
- Departamento de Mapeamento Topográfico, Sociedade Brasileira de Neurofisiologia Clínica, São Paulo, Brasil
| | | | | | | | | | | | | |
Collapse
|
19
|
Fernández-Bouzas A, Harmony T, Marosi E, Fernández T, Silva J, Rodríguez M, Bernal J, Reyes A, Casián G. Evolution of cerebral edema and its relationship with power in the theta band. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 102:279-85. [PMID: 9146487 DOI: 10.1016/s0013-4694(96)96049-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous papers we have proposed that in patients with space-occupying lesions, delta power was related with the volume of the lesion and theta power with the volume of the edema. In this report we analyze the evolution of 10 patients with space-occupying lesions in whom we measured the volume of the lesion and of the edema before and after treatment that produced changes in these volumes. EEGs were recorded in the leads of the 10-20 system referenced to linked earlobes. Delta and theta powers were calculated for voltage and current source densities (CSD) and compared with age-norms to compute conventional Z-maps. These maps provide probability statements about the deviation of observed values from the norm. Rank correlations between the change in the volume of the lesion before and after treatment and the change in Z-values before and after treatment were significant only in the delta band. However, rank correlations between the change in the volume of the edema and the change in EEG Z-values were only significant in the theta band. These correlations were higher for CSD than for voltage estimates. We also observed that the site of the lesion and of the edema was better represented by CSD maps than by voltage maps. These results are also in agreement with our previous reports, in which we observed more precise localization of brain lesions by CSD than by voltage estimates.
Collapse
Affiliation(s)
- A Fernández-Bouzas
- ENEP Iztacala Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|