1
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
2
|
Alizadeh F, Abraghan YJ, Farrokhi S, Yousefi Y, Mirahmadi Y, Eslahi A, Mojarrad M. Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy. Mol Cell Biochem 2024; 479:1027-1040. [PMID: 37289342 DOI: 10.1007/s11010-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive muscle wasting disorder caused by loss-of-function mutations in the dystrophin gene. Although the search for a definitive cure has failed to date, extensive efforts have been made to introduce effective therapeutic strategies. Gene editing technology is a great revolution in biology, having an immediate application in the generation of research models. DMD muscle cell lines are reliable sources to evaluate and optimize therapeutic strategies, in-depth study of DMD pathology, and screening the effective drugs. However, only a few immortalized muscle cell lines with DMD mutations are available. In addition, obtaining muscle cells from patients also requires an invasive muscle biopsy. Mostly DMD variants are rare, making it challenging to identify a patient with a particular mutation for a muscle biopsy. To overcome these challenges and generate myoblast cultures, we optimized a CRISPR/Cas9 gene editing approach to model the most common DMD mutations that include approximately 28.2% of patients. GAP-PCR and sequencing results show the ability of the CRISPR-Cas9 system to efficient deletion of mentioned exons. We showed producing truncated transcript due to the targeted deletion by RT-PCR and sequencing. Finally, mutation-induced disruption of dystrophin protein expression was confirmed by western blotting. All together, we successfully created four immortalized DMD muscle cell lines and showed the efficacy of the CRISPR-Cas9 system for the generation of immortalized DMD cell models with the targeted deletions.
Collapse
Affiliation(s)
- Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abraghan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yousefi
- Department of Biochemistry, Mashhad University of Ferdowsi, Mashhad, Iran
| | - Yeganeh Mirahmadi
- Department of Biochemistry, Genetics and Molecular Biology, Islamic Azad University, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Genetic Center of Khorasan Razavi, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Mozzetta C, Sartorelli V, Steinkuhler C, Puri PL. HDAC inhibitors as pharmacological treatment for Duchenne muscular dystrophy: a discovery journey from bench to patients. Trends Mol Med 2024; 30:278-294. [PMID: 38408879 PMCID: PMC11095976 DOI: 10.1016/j.molmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Pier Lorenzo Puri
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
6
|
Yoshina S, Izuhara L, Mashima R, Maejima Y, Kamatani N, Mitani S. Febuxostat ameliorates muscle degeneration and movement disorder of the dystrophin mutant model in Caenorhabditis elegans. J Physiol Sci 2023; 73:28. [PMID: 37950170 DOI: 10.1186/s12576-023-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited disorder with mutations in the dystrophin gene characterized by progressive muscle degeneration and weakness. Therapy such as administration of glucocorticoids, exon skipping of mutant genes and introduction of dystrophin mini-genes have been tried, but there is no radical therapy for DMD. In this study, we used C. elegans carrying mutations in the dys-1 gene as a model of DMD to examine the effects of febuxostat (FBX). We applied FBX to dys-1 mutant animals harboring a marker for muscle nuclei and mitochondria, and found that FBX ameliorates the muscle loss. We next used a severer model dys-1; unc-22 double mutant and found the dys-1 mutation causes a weakened muscle contraction. We applied FBX and other compounds to the double mutant animals and assayed the movement. We found that the administration of FBX in combination of uric acid has the best effects on the DMD model.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Luna Izuhara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Rei Mashima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuka Maejima
- Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Naoyuki Kamatani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Stagen. Co. Ltd., 4-11-6, Kuramae, Taito-Ku, Tokyo 111-0051, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
7
|
Cardone N, Taglietti V, Baratto S, Kefi K, Periou B, Gitiaux C, Barnerias C, Lafuste P, Pharm FL, Pharm JN, Panicucci C, Desguerre I, Bruno C, Authier FJ, Fiorillo C, Relaix F, Malfatti E. Myopathologic trajectory in Duchenne muscular dystrophy (DMD) reveals lack of regeneration due to senescence in satellite cells. Acta Neuropathol Commun 2023; 11:167. [PMID: 37858263 PMCID: PMC10585739 DOI: 10.1186/s40478-023-01657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kaouthar Kefi
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Baptiste Periou
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Ciryl Gitiaux
- Neurophysiologie clinique pédiatrique, Centre de référence des maladies neuromusculaires Hôpital universitaire Necker-Enfants Malades-Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955 INSERM, IMRB, APHP, Creteil, France
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Christine Barnerias
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Peggy Lafuste
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - France Leturcq Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Juliette Nectoux Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
| | - François-Jerome Authier
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
- Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Frederic Relaix
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
| | - Edoardo Malfatti
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France.
| |
Collapse
|
8
|
Motohashi N, Minegishi K, Aoki Y. Inherited myogenic abilities in muscle precursor cells defined by the mitochondrial complex I-encoding protein. Cell Death Dis 2023; 14:689. [PMID: 37857600 PMCID: PMC10587152 DOI: 10.1038/s41419-023-06192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Skeletal muscle comprises different muscle fibers, including slow- and fast-type muscles, and satellite cells (SCs), which exist in individual muscle fibers and possess different myogenic properties. Previously, we reported that myoblasts (MBs) from slow-type enriched soleus (SOL) had a high potential to self-renew compared with cells derived from fast-type enriched tibialis anterior (TA). However, whether the functionality of myogenic cells in adult muscles is attributed to the muscle fiber in which they reside and whether the characteristics of myogenic cells derived from slow- and fast-type fibers can be distinguished at the genetic level remain unknown. Global gene expression analysis revealed that the myogenic potential of MBs was independent of the muscle fiber type they reside in but dependent on the region of muscles they are derived from. Thus, in this study, proteomic analysis was conducted to clarify the molecular differences between MBs derived from TA and SOL. NADH dehydrogenase (ubiquinone) iron-sulfur protein 8 (Ndufs8), a subunit of NADH dehydrogenase in mitochondrial complex I, significantly increased in SOL-derived MBs compared with that in TA-derived cells. Moreover, the expression level of Ndufs8 in MBs significantly decreased with age. Gain- and loss-of-function experiments revealed that Ndufs8 expression in MBs promoted differentiation, self-renewal, and apoptosis resistance. In particular, Ndufs8 suppression in MBs increased p53 acetylation, followed by a decline in NAD/NADH ratio. Nicotinamide mononucleotide treatment, which restores the intracellular NAD+ level, could decrease p53 acetylation and increase myogenic cell self-renewal ability in vivo. These results suggested that the functional differences in MBs derived from SOL and TA governed by the mitochondrial complex I-encoding gene reflect the magnitude of the decline in SC number observed with aging, indicating that the replenishment of NAD+ is a possible approach for improving impaired cellular functions caused by aging or diseases.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| | - Katsura Minegishi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| |
Collapse
|
9
|
Dowling P, Swandulla D, Ohlendieck K. Cellular pathogenesis of Duchenne muscular dystrophy: progressive myofibre degeneration, chronic inflammation, reactive myofibrosis and satellite cell dysfunction. Eur J Transl Myol 2023; 33:11856. [PMID: 37846661 PMCID: PMC10811648 DOI: 10.4081/ejtm.2023.11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disease of early childhood and characterized by complex pathophysiological and histopathological changes in the voluntary contractile system, including myonecrosis, chronic inflammation, fat substitution and reactive myofibrosis. The continued loss of functional myofibres and replacement with non-contractile cells, as well as extensive tissue scarring and decline in tissue elasticity, leads to severe skeletal muscle weakness. In addition, dystrophic muscles exhibit a greatly diminished regenerative capacity to counteract the ongoing process of fibre degeneration. In normal muscle tissues, an abundant stem cell pool consisting of satellite cells that are localized between the sarcolemma and basal lamina, provides a rich source for the production of activated myogenic progenitor cells that are involved in efficient myofibre repair and tissue regeneration. Interestingly, the self-renewal of satellite cells for maintaining an essential pool of stem cells in matured skeletal muscles is increased in dystrophin-deficient fibres. However, satellite cell hyperplasia does not result in efficient recovery of dystrophic muscles due to impaired asymmetric cell divisions. The lack of expression of the full-length dystrophin isoform Dp427-M, which is due to primary defects in the DMD gene, appears to affect key regulators of satellite cell polarity causing a reduced differentiation of myogenic progenitors, which are essential for myofibre regeneration. This review outlines the complexity of dystrophinopathy and describes the importance of the pathophysiological role of satellite cell dysfunction. A brief discussion of the bioanalytical usefulness of single cell proteomics for future studies of satellite cell biology is provided.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
10
|
Potter RA, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Expression and function of four AAV-based constructs for dystrophin restoration in the mdx mouse model of Duchenne muscular dystrophy. Biol Open 2023; 12:bio059797. [PMID: 37670674 PMCID: PMC10538294 DOI: 10.1242/bio.059797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Robust expression of shortened, functional dystrophin provided impetus to develop adeno-associated virus (AAV)-based constructs for clinical application. Because several cassettes are being tested in clinical trials, this study compared the efficacies of four shortened dystrophin-promoter combinations with implications for outcomes in clinical trials: MHCK7 or MCK promoter with a shortened dystrophin transgene containing the N-terminus and spectrin repeats R1, R2, R3 and R24 (rAAVrh74.MHCK7.micro-dystrophin and rAAVrh74.MCK.micro-dystrophin, respectively); shortened dystrophin construct containing the neuronal nitric oxide (nNOS) binding site (rAAVrh74.MHCK7.DV.mini-dystrophin); and shortened dystrophin containing the C-terminus (rAAVrh74.MHCK7.micro-dystrophin.Cterm). Functional and histological benefit were examined at 4 weeks following intramuscular delivery in mdx mice. rAAVrh74.MHCK7.micro-dystrophin provided the most robust transgene expression and significantly increased specific force output in the tibialis anterior muscle. Muscle environment was normalized (i.e. reductions in central nucleation), indicating functional and histological advantages of rAAVrh74.MHCK7.micro-dystrophin. Thus, promoter choice and transgene design are critical for optimal dystrophin expression/distribution for maximal functional improvement.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2-mdx model of severe DMD. Cell Death Discov 2023; 9:224. [PMID: 37402716 PMCID: PMC10319851 DOI: 10.1038/s41420-023-01503-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Iteoluwakishi H Gamu
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
12
|
Bobadilla Muñoz M, Orbe J, Abizanda G, Machado FJD, Vilas A, Ullate-Agote A, Extramiana L, Baraibar Churio A, Aranguren XL, Cantero G, Sáinz Amillo N, Rodríguez JA, Ramos García L, Romero Riojas JP, Vallejo-Illarramendi A, Paradas C, López de Munain A, Páramo JA, Prósper F, Pérez-Ruiz A. Loss of the matrix metalloproteinase-10 causes premature features of aging in satellite cells. Front Cell Dev Biol 2023; 11:1128534. [PMID: 37228645 PMCID: PMC10203875 DOI: 10.3389/fcell.2023.1128534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.
Collapse
Affiliation(s)
- Miriam Bobadilla Muñoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Orbe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)-Ictus, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Abizanda
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Florencio J. D. Machado
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Asier Ullate-Agote
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Arantxa Baraibar Churio
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Neira Sáinz Amillo
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Centre for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - José Antonio Rodríguez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ramos García
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Radiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Juan Pablo Romero Riojas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Adolfo López de Munain
- CIBERNED-Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
- Neurology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - José Antonio Páramo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Ana Pérez-Ruiz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
13
|
Saleh KK, Switzler C, Hicks MR, Gane L, Gibbs DE, Pyle AD. Duchenne muscular dystrophy disease severity impacts skeletal muscle progenitor cells systemic delivery. Front Physiol 2023; 14:1190524. [PMID: 37228827 PMCID: PMC10203213 DOI: 10.3389/fphys.2023.1190524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by an out-of-frame mutation in the DMD gene that results in the absence of a functional dystrophin protein, leading to a devastating progressive lethal muscle-wasting disease. Muscle stem cell-based therapy is a promising avenue for improving muscle regeneration. However, despite the efforts to deliver the optimal cell population to multiple muscles most efforts have failed. Here we describe a detailed optimized method of for the delivery of human skeletal muscle progenitor cells (SMPCs) to multiple hindlimb muscles in healthy, dystrophic and severely dystrophic mouse models. We show that systemic delivery is inefficient and is affected by the microenvironment. We found that significantly less human SMPCs were detected in healthy gastrocnemius muscle cross-sections, compared to both dystrophic and severely dystrophic gastrocnemius muscle. Human SMPCs were found to be detected inside blood vessels distinctly in healthy, dystrophic and severely dystrophic muscles, with prominent clotting identified in severely dystrophic muscles after intra arterial (IA) systemic cell delivery. We propose that muscle microenvironment and the severity of muscular dystrophy to an extent impacts the systemic delivery of SMPCs and that overall systemic stem cell delivery is not currently efficient or safe to be used in cell based therapies for DMD. This work extends our understanding of the severe nature of DMD, which should be taken into account when considering stem cell-based systemic delivery platforms.
Collapse
Affiliation(s)
- Kholoud K. Saleh
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
| | - Corey Switzler
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Michael R. Hicks
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
| | - Lily Gane
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
| | - Devin E. Gibbs
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - April D. Pyle
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2- mdx model of severe DMD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534413. [PMID: 37034785 PMCID: PMC10081277 DOI: 10.1101/2023.03.27.534413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of dystrophin is the genetic basis for the Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2- mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2- mdx muscles is associated with enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports excessive accumulation of fibroadipogenic progenitors (FAPs). Unexpectedly, the extent of damage and degeneration of juvenile D2- mdx muscle is reduced in adults and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance myogenesis in the adult D2- mdx muscle, reaching levels comparable to the milder (B10- mdx ) mouse model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with the juvenile D2- mdx FAPs reduced their fusion efficacy and in vivo glucocorticoid treatment of juvenile D2 mouse improved muscle regeneration. Our findings indicate that aberrant stromal cell response contributes to poor myogenesis and greater muscle degeneration in dystrophic juvenile D2- mdx muscles and reversal of this reduces pathology in adult D2- mdx mouse muscle, identifying these as therapeutic targets to treat dystrophic DMD muscles.
Collapse
Affiliation(s)
- Davi A. G. Mázala
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Iteoluwakishi H. Gamu
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A. Partridge
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - James S. Novak
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| |
Collapse
|
15
|
Motohashi N, Minegishi K, Imamura M, Aoki Y. Techniques for Injury, Cell Transplantation, and Histological Analysis in Skeletal Muscle. Methods Mol Biol 2023; 2640:193-205. [PMID: 36995596 DOI: 10.1007/978-1-0716-3036-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscle can adjust to changes in physiological and pathological environments by regenerating using myogenic progenitor cells or adapting muscle fiber sizes and types, metabolism, and contraction ability. To study these changes, muscle samples should be appropriately prepared. Therefore, reliable techniques to accurately analyze and evaluate skeletal muscle phenotypes are required. However, although technical approaches to genetically investigating skeletal muscle are improving, the fundamental strategies for capturing muscle pathology are the same over the decades. Hematoxylin and eosin (H&E) staining or antibodies are the simplest and standard methodologies for assessing skeletal muscle phenotypes. In this chapter, we describe fundamental techniques and protocols for inducing skeletal muscle regeneration by using chemicals and cell transplantation, in addition to methods of preparing and evaluating skeletal muscle samples.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
| | - Katsura Minegishi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
16
|
Saleh KK, Xi H, Switzler C, Skuratovsky E, Romero MA, Chien P, Gibbs D, Gane L, Hicks MR, Spencer MJ, Pyle AD. Single cell sequencing maps skeletal muscle cellular diversity as disease severity increases in dystrophic mouse models. iScience 2022; 25:105415. [PMID: 36388984 PMCID: PMC9646951 DOI: 10.1016/j.isci.2022.105415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations in the DMD gene resulting in the absence of a functional dystrophin protein, leading to a devastating and progressive lethal muscle-wasting disease. Little is known about cellular heterogeneity as disease severity increases. Advances in single-cell RNA sequencing (scRNA-seq) enabled us to explore skeletal muscle-resident cell populations in healthy, dystrophic, and severely dystrophic mouse models. We found increased frequencies of activated fibroblasts, fibro-adipogenic progenitor cells, and pro-inflammatory macrophages in dystrophic gastrocnemius muscles and an upregulation of extracellular matrix genes on endothelial cells in dystrophic and severely dystrophic muscles. We observed a pronounced risk of clotting, especially in the severely dystrophic mice with increased expression of plasminogen activator inhibitor-1 in endothelial cells, indicating endothelial cell impairment as disease severity increases. This work extends our understanding of the severe nature of DMD which should be considered when developing single or combinatorial approaches for DMD.
Collapse
Affiliation(s)
- Kholoud K. Saleh
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Switzler
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Skuratovsky
- CIRM Bridges Program, California State University, Northridge, CA 91330, USA
| | - Matthew A. Romero
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Gibbs
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Gane
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Melissa J. Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, University of California Los Angeles, CA 90095, USA
| | - April D. Pyle
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Farea M, Maeta K, Nishio H, Matsuo M. Human Dystrophin Dp71ab Enhances the Proliferation of Myoblasts Across Species But Not Human Nonmyoblast Cells. Front Cell Dev Biol 2022; 10:877612. [PMID: 35547811 PMCID: PMC9081641 DOI: 10.3389/fcell.2022.877612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Dystrophin Dp71 is an isoform produced from the Dp71 promoter in intron 62 of the DMD gene, mutations in which cause Duchenne muscular dystrophy. Dp71 is involved in various cellular processes and comprises more than 10 isoforms produced by alternative splicing. Dp71ab, in which both exons 71 and 78 are deleted, has a hydrophobic C-terminus that is hydrophilic in Dp71. Therefore, Dp71ab is believed to have different roles from Dp71. Previously, we reported that Dp71ab enhanced the proliferation of human myoblasts. Here, we further characterized Dp71ab, focusing on the activation of cell proliferation. Dp71ab increased the proliferation of immortalized human myoblasts in a dose-dependent manner. In contrast, Dp71 suppressed proliferation in a dose-dependent manner. Consistent with these opposite effects, eGFP-tagged Dp71ab and mCherry-tagged Dp71 showed different cellular distributions, with Dp71ab mostly in the nucleus. Notably, human Dp71ab enhanced the proliferation of rat and mouse myoblasts. Despite these findings, human Dp71ab did not enhance the proliferation of human nonmyoblast cells, including rhabdomyosarcoma cells. We concluded that Dp71ab is a myoblast-specific proliferation enhancer. In further studies, Dp71ab will be employed for the expansion of myoblasts in clinical settings.
Collapse
Affiliation(s)
- Manal Farea
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| | - Kazuhiro Maeta
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Hisahide Nishio
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
- Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
- *Correspondence: Masafumi Matsuo,
| |
Collapse
|
18
|
Guo D, Daman K, Chen JJC, Shi MJ, Yan J, Matijasevic Z, Rickard AM, Bennett MH, Kiselyov A, Zhou H, Bang AG, Wagner KR, Maehr R, King OD, Hayward LJ, Emerson CP. iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. eLife 2022; 11:e70341. [PMID: 35076017 PMCID: PMC8789283 DOI: 10.7554/elife.70341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.
Collapse
Affiliation(s)
- Dongsheng Guo
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer JC Chen
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Meng-Jiao Shi
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jing Yan
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zdenka Matijasevic
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | | | | | | | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger InstituteBaltimoreUnited States
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Oliver D King
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence J Hayward
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
19
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
20
|
Acosta FM, Howland KK, Stojkova K, Hernandez E, Brey EM, Rathbone CR. Adipogenic Differentiation Alters Properties of Vascularized Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2022; 28:54-68. [PMID: 34102861 PMCID: PMC8812504 DOI: 10.1089/ten.tea.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advances in the engineering of comprehensive skeletal muscle models in vitro will improve drug screening platforms and can lead to better therapeutic approaches for the treatment of skeletal muscle injuries. To this end, a vascularized tissue-engineered skeletal muscle (TE-SkM) model that includes adipocytes was developed to better emulate the intramuscular adipose tissue that is observed in skeletal muscles of patients with diseases such as diabetes. Muscle precursor cells cultured with and without microvessels derived from adipose tissue (microvascular fragments) were used to generate TE-SkM constructs, with and without a microvasculature, respectively. TE-SkM constructs were treated with adipogenic induction media to induce varying levels of adipogenesis. With a delayed addition of induction media to allow for angiogenesis, a robust microvasculature in conjunction with an increased content of adipocytes was achieved. The augmentation of vascularized TE-SkM constructs with adipocytes caused a reduction in maturation (compaction), mechanical integrity (Young's modulus), and myotube and vessel alignment. An increase in basal glucose uptake was observed in both levels of adipogenic induction, and a diminished insulin-stimulated glucose uptake was associated with the higher level of adipogenic differentiation and the greater number of adipocytes.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - Kennedy K. Howland
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Elizabeth Hernandez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,Address correspondence to: Christopher R. Rathbone, PhD, Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
21
|
Flores I, Welc SS, Wehling-Henricks M, Tidball JG. Myeloid cell-mediated targeting of LIF to dystrophic muscle causes transient increases in muscle fiber lesions by disrupting the recruitment and dispersion of macrophages in muscle. Hum Mol Genet 2021; 31:189-206. [PMID: 34392367 PMCID: PMC8743000 DOI: 10.1093/hmg/ddab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Leukemia inhibitory factor (LIF) can influence development by increasing cell proliferation and inhibiting differentiation. Because of its potency for expanding stem cell populations, delivery of exogenous LIF to diseased tissue could have therapeutic value. However, systemic elevations of LIF can have negative, off-target effects. We tested whether inflammatory cells expressing a LIF transgene under control of a leukocyte-specific, CD11b promoter provide a strategy to target LIF to sites of damage in the mdx mouse model of Duchenne muscular dystrophy, leading to increased numbers of muscle stem cells and improved muscle regeneration. However, transgene expression in inflammatory cells did not increase muscle growth or increase numbers of stem cells required for regeneration. Instead, transgene expression disrupted the normal dispersion of macrophages in dystrophic muscles, leading to transient increases in muscle damage in foci where macrophages were highly concentrated during early stages of pathology. The defect in inflammatory cell dispersion reflected impaired chemotaxis of macrophages to C-C motif chemokine ligand-2 and local increases of LIF production that produced large aggregations of cytolytic macrophages. Transgene expression also induced a shift in macrophage phenotype away from a CD206+, M2-biased phenotype that supports regeneration. However, at later stages of the disease when macrophage numbers declined, they dispersed in the muscle, leading to reductions in muscle fiber damage, compared to non-transgenic mdx mice. Together, the findings show that macrophage-mediated delivery of transgenic LIF exerts differential effects on macrophage dispersion and muscle damage depending on the stage of dystrophic pathology.
Collapse
Affiliation(s)
- Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
| | - James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Niu W, Wang H, Wang B, Mao X, Du M. Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis. J Nutr Biochem 2021; 98:108804. [PMID: 34171502 DOI: 10.1016/j.jnutbio.2021.108804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. Obesity is known to inhibit AMP-activated protein kinase (AMPK) activity, which impedes mitochondrial biogenesis, myogenic differentiation and muscle regeneration. Resveratrol has an effective anti-obesity effect, but its effect on regeneration of muscle in obese mice remains to be tested. We hypothesized that resveratrol activates AMPK and mitochondrial biogenesis to improve muscle regeneration. Male C57BL/6J mice were fed a control diet or a 60% high-fat diet with or without resveratrol supplementation for 8 weeks and, then, the tibialis anterior muscle was subjected to cardiotoxin-induced muscle injury. Muscle tissue was collected at 3 and 7 d after injury. We found that resveratrol enhanced both proliferation and differentiation of satellite cells following injury in obese mice. Markers of mitochondrial biogenesis were upregulated in resveratrol-treated mice. In C2C12 myogenic cells, resveratrol activated AMPK and stimulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which were associated with enhanced myogenic differentiation. Such effects of resveratrol were abolished by AMPKα1 ablation, showing the mediatory roles of AMPK. In summary, dietary resveratrol activates AMPK/ proliferator-activated receptor gamma coactivator 1-alpha axis to facilitate mitochondrial biogenesis and muscle regeneration impaired due to obesity.
Collapse
Affiliation(s)
- Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
23
|
Tone Y, Mamchaoui K, Tsoumpra MK, Hashimoto Y, Terada R, Maruyama R, Gait MJ, Arzumanov AA, McClorey G, Imamura M, Takeda S, Yokota T, Wood MJ, Mouly V, Aoki Y. Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides. Nucleic Acid Ther 2021; 31:172-181. [PMID: 33567244 PMCID: PMC7997716 DOI: 10.1089/nat.2020.0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense mutations in the DMD gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using splice-switching oligonucleotides (SSOs) restores the reading frame of DMD pre-mRNA by generating internally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional SSOs, it is essential to perform accelerated and reliable in vitro screening-based assessment of novel oligonucleotides and drug delivery technologies, such as cell-penetrating peptides, before their in vivo pharmacokinetic and toxicity evaluation. We have established novel canine immortalized myoblast lines by transducing murine cyclin-dependent kinase-4 and human telomerase reverse transcriptase genes into myoblasts isolated from beagle-based wild-type or canine X-linked muscular dystrophy in Japan (CXMDJ) dogs. These myoblast lines exhibited improved myogenic differentiation and increased proliferation rates compared with passage-15 primary parental myoblasts, and their potential to differentiate into myotubes was maintained in later passages. Using these dystrophin-deficient immortalized myoblast lines, we demonstrate that a novel cell-penetrating peptide (Pip8b2)-conjugated SSO markedly improved multiexon skipping activity compared with the respective naked phosphorodiamidate morpholino oligomers. In vitro screening using immortalized canine cell lines will provide a basis for further pharmacological studies on drug delivery tools.
Collapse
Affiliation(s)
- Yuichiro Tone
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Discovery Research Laboratories in Tsukuba, Nippon Shinyaku Co., Ltd., Tsukuba, Japan
| | - Kamel Mamchaoui
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Maria K. Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Reiko Terada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrey A. Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Oxford Harrington Rare Disease Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincent Mouly
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
24
|
Joseph J, Doles JD. Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook. Nutr Metab (Lond) 2021; 18:33. [PMID: 33766031 PMCID: PMC7992337 DOI: 10.1186/s12986-021-00565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
Collapse
Affiliation(s)
- Josiane Joseph
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Jones L, Naidoo M, Machado LR, Anthony K. The Duchenne muscular dystrophy gene and cancer. Cell Oncol (Dordr) 2021; 44:19-32. [PMID: 33188621 PMCID: PMC7906933 DOI: 10.1007/s13402-020-00572-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mutation of the Duchenne muscular dystrophy (DMD) gene causes Duchenne and Becker muscular dystrophy, degenerative neuromuscular disorders that primarily affect voluntary muscles. However, increasing evidence implicates DMD in the development of all major cancer types. DMD is a large gene with 79 exons that codes for the essential muscle protein dystrophin. Alternative promotor usage drives the production of several additional dystrophin protein products with roles that extend beyond skeletal muscle. The importance and function(s) of these gene products outside of muscle are not well understood. CONCLUSIONS We highlight a clear role for DMD in the pathogenesis of several cancers, including sarcomas, leukaemia's, lymphomas, nervous system tumours, melanomas and various carcinomas. We note that the normal balance of DMD gene products is often disrupted in cancer. The short dystrophin protein Dp71 is, for example, typically maintained in cancer whilst the full-length Dp427 gene product, a likely tumour suppressor, is frequently inactivated in cancer due to a recurrent loss of 5' exons. Therefore, the ratio of short and long gene products may be important in tumorigenesis. In this review, we summarise the tumours in which DMD is implicated and provide a hypothesis for possible mechanisms of tumorigenesis, although the question of cause or effect may remain. We hope to stimulate further study into the potential role of DMD gene products in cancer and the development of novel therapeutics that target DMD.
Collapse
Affiliation(s)
- Leanne Jones
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
| | - Michael Naidoo
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
| | - Lee R Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
- Department of Genetics and Genome Science, University of Leicester, LE1 7RH, Leicester, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK.
| |
Collapse
|
26
|
Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci Rep 2020; 10:17123. [PMID: 33051488 PMCID: PMC7553993 DOI: 10.1038/s41598-020-74157-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophin Dp71 is the smallest isoform of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD). Dp71 has also been shown to have roles in various cellular processes. Stem cell-based therapy may be effective in treating DMD, but the inability to generate a sufficient number of stem cells remains a significant obstacle. Although Dp71 is comprised of many variants, Dp71 in satellite cells has not yet been studied. Here, the full-length Dp71 consisting of 18 exons from exons G1 to 79 was amplified by reverse transcription-PCR from total RNA of human satellite cells. The amplified product showed deletion of both exons 71 and 78 in all sequenced clones, indicating monoclonal expression of Dp71ab. Western blotting of the satellite cell lysate showed a band corresponding to over-expressed Dp71ab. Transfection of a plasmid expressing Dp71ab into human myoblasts significantly enhanced cell proliferation when compared to the cells transfected with the mock plasmid. However, transfection of the Dp71 expression plasmid encoding all 18 exons did not enhance myoblast proliferation. These findings indicated that Dp71ab, but not Dp71, is a molecular enhancer of myoblast proliferation and that transfection with Dp71ab may generate a high yield of stem cells for DMD treatment.
Collapse
|
27
|
Saini J, Faroni A, Reid AJ, Mamchaoui K, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. J Clin Med 2020; 9:jcm9103238. [PMID: 33050427 PMCID: PMC7599749 DOI: 10.3390/jcm9103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis of MU development and function. Methods: an immortalised human myoblast cell line was co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy. The function of the MU was evaluated through live observations and videography of spontaneous myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results: blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly higher with the application of L-glutamic acid. All these observations indicate the formed MU are functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential for drug screening and pathophysiological studies of neuromuscular interactions.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Alessandro Faroni
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Adam J. Reid
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK;
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Correspondence:
| |
Collapse
|
28
|
Evano B, Gill D, Hernando-Herraez I, Comai G, Stubbs TM, Commere PH, Reik W, Tajbakhsh S. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet 2020; 16:e1009022. [PMID: 33125370 PMCID: PMC7657492 DOI: 10.1371/journal.pgen.1009022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/11/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Diljeet Gill
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Glenda Comai
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Thomas M. Stubbs
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Pierre-Henri Commere
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 28 rue du Dr. Roux, Paris, France
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Effect of exercise on telomere length and telomere proteins expression in mdx mice. Mol Cell Biochem 2020; 470:189-197. [DOI: 10.1007/s11010-020-03761-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
30
|
Mázala DA, Novak JS, Hogarth MW, Nearing M, Adusumalli P, Tully CB, Habib NF, Gordish-Dressman H, Chen YW, Jaiswal JK, Partridge TA. TGF-β-driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model. JCI Insight 2020; 5:135703. [PMID: 32213706 PMCID: PMC7213798 DOI: 10.1172/jci.insight.135703] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/26/2020] [Indexed: 01/23/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a chronic muscle disease characterized by poor myogenesis and replacement of muscle by extracellular matrix. Despite the shared genetic basis, severity of these deficits varies among patients. One source of these variations is the genetic modifier that leads to increased TGF-β activity. While anti-TGF-β therapies are being developed to target muscle fibrosis, their effect on the myogenic deficit is underexplored. Our analysis of in vivo myogenesis in mild (C57BL/10ScSn-mdx/J and C57BL/6J-mdxΔ52) and severe DBA/2J-mdx (D2-mdx) dystrophic models reveals no defects in developmental myogenesis in these mice. However, muscle damage at the onset of disease pathology, or by experimental injury, drives up TGF-β activity in the severe, but not in the mild, dystrophic models. Increased TGF-β activity is accompanied by increased accumulation of fibroadipogenic progenitors (FAPs) leading to fibro-calcification of muscle, together with failure of regenerative myogenesis. Inhibition of TGF-β signaling reduces muscle degeneration by blocking FAP accumulation without rescuing regenerative myogenesis. These findings provide in vivo evidence of early-stage deficit in regenerative myogenesis in D2-mdx mice and implicates TGF-β as a major component of a pathogenic positive feedback loop in this model, identifying this feedback loop as a therapeutic target.
Collapse
Affiliation(s)
- Davi A.G. Mázala
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - James S. Novak
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine and
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Marshall W. Hogarth
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Marie Nearing
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Prabhat Adusumalli
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Nayab F. Habib
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine and
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine and
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine and
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Terence A. Partridge
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine and
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
31
|
Libertini G, Corbi G, Cellurale M, Ferrara N. Age-Related Dysfunctions: Evidence and Relationship with Some Risk Factors and Protective Drugs. BIOCHEMISTRY (MOSCOW) 2020; 84:1442-1450. [PMID: 31870248 DOI: 10.1134/s0006297919120034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The theories interpreting senescence as a phenomenon favored by natural selection require the existence of specific, genetically determined and regulated mechanisms that cause a progressive age-related increase in mortality. The mechanisms defined in the subtelomere-telomere theory suggest that progressive slackening of cell turnover and decline in cellular functions are determined by the subtelomere-telomere-telomerase system, which causes a progressive "atrophic syndrome" in all organs and tissues. If the mechanisms underlying aging-related dysfunctions are similar and having the same origin, it could be hypothesized that equal interventions could produce similar effects. This article reviews the consequences of some factors (diabetes, obesity/dyslipidemia, hypertension, smoking, moderate use and abuse of alcohol) and classes of drugs [statins, angiotensin-converting enzyme (ACE) inhibitors, sartans] in accelerating and anticipating or in counteracting the process of aging. The evidence is compatible with the programmed aging paradigm and the mechanisms defined by the subtelomere-telomere theory but it has no obvious discriminating value against the theories of non-programmed aging paradigm. However, the existence of mechanisms, determined by the subtelomere-telomere-telomerase system and causing a progressive age-related decline in fitness through gradual cell senescence and cell senescence, is not justifiable without an evolutionary motivation. Their existence is expected by the programmed aging paradigm, while is incompatible with the opposite paradigm.
Collapse
Affiliation(s)
- G Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Italy.
| | - G Corbi
- Department of Medicine and Health Sciences, University of Molise, and Italian Society of Gerontology and Geriatrics (SIGG), Campobasso, 86100, Italy.
| | - M Cellurale
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
| | - N Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy. .,Istituti Clinici Scientifici Maugeri IRCCS, SpA SB, Telese Terme (BN), Italy
| |
Collapse
|
32
|
Potential Therapies Using Myogenic Stem Cells Combined with Bio-Engineering Approaches for Treatment of Muscular Dystrophies. Cells 2019; 8:cells8091066. [PMID: 31514443 PMCID: PMC6769835 DOI: 10.3390/cells8091066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of heterogeneous genetic disorders caused by mutations in the genes encoding the structural components of myofibres. The current state-of-the-art treatment is oligonucleotide-based gene therapy that restores disease-related protein. However, this therapeutic approach has limited efficacy and is unlikely to be curative. While the number of studies focused on cell transplantation therapy has increased in the recent years, this approach remains challenging due to multiple issues related to the efficacy of engrafted cells, source of myogenic cells, and systemic injections. Technical innovation has contributed to overcoming cell source challenges, and in recent studies, a combination of muscle resident stem cells and gene editing has shown promise as a novel approach. Furthermore, improvement of the muscular environment both in cultured donor cells and in recipient MD muscles may potentially facilitate cell engraftment. Artificial skeletal muscle generated by myogenic cells and muscle resident cells is an alternate approach that may enable the replacement of damaged tissues. Here, we review the current status of myogenic stem cell transplantation therapy, describe recent advances, and discuss the remaining obstacles that exist in the search for a cure for MD patients.
Collapse
|
33
|
Ribeiro AF, Souza LS, Almeida CF, Ishiba R, Fernandes SA, Guerrieri DA, Santos ALF, Onofre-Oliveira PCG, Vainzof M. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019; 9:11842. [PMID: 31413358 PMCID: PMC6694188 DOI: 10.1038/s41598-019-48156-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
Satellite cells (SCs) are the main muscle stem cells responsible for its regenerative capacity. In muscular dystrophies, however, a failure of the regenerative process results in muscle degeneration and weakness. To analyze the effect of different degrees of muscle degeneration in SCs behavior, we studied adult muscle of the dystrophic strains: DMDmdx, Largemyd, DMDmdx/Largemyd, with variable histopathological alterations. Similar results were observed in the dystrophic models, which maintained normal levels of PAX7 expression, retained the Pax7-positive SCs pool, and their proliferation capacity. Moreover, elevated expression of MYOG, an important myogenic factor, was also observed. The ability to form new fibers was verified by the presence of dMyHC positive regenerating fibers. However, those fibers had incomplete maturation characteristics, such as small and homogenous fiber caliber, which could contribute to their dysfunction. We concluded that dystrophic muscles, independently of their degeneration degree, retain their SCs pool with proliferating and regenerative capacities. Nonetheless, the maturation of these new fibers is incomplete and do not prevent muscle degeneration. Taken together, these results suggest that the improvement of late muscle regeneration should better contribute to therapeutic approaches.
Collapse
Affiliation(s)
- Antonio F Ribeiro
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Lucas S Souza
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Camila F Almeida
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Renata Ishiba
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Stephanie A Fernandes
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Danielle A Guerrieri
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - André L F Santos
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paula C G Onofre-Oliveira
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Mariz Vainzof
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
34
|
Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is capable of efficiently regenerating after damage in a process mediated by tissue-resident stem cells called satellite cells. This regenerative potential is often compromised under muscle-degenerative conditions. Consequently, the damage produced during degeneration is not efficiently repaired and the balance between repair and damage is lost. Here we review recent progress on the role of satellite cell-mediated repair in neuromuscular disorders with a focus on Pompe disease, an inherited metabolic myopathy caused by deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Studies performed in patient biopsies as well as in Pompe disease mouse models demonstrate that muscle regeneration activity is compromised despite progressing muscle damage. We describe disease-specific mechanisms of satellite cell dysfunction to highlight the differences between Pompe disease and muscle dystrophies. The mechanisms involved provide possible targets for therapy, such as modulation of autophagy, muscle exercise, and pharmacological modulation of satellite cell activation. Most of these approaches are still experimental, although promising in animal models, still warrant caution with respect to their safety and efficiency profile.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rodrigo Canibano-Fraile
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom J M van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells Int 2019; 2019:5980465. [PMID: 31249600 PMCID: PMC6561664 DOI: 10.1155/2019/5980465] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
The regeneration of the muscle tissue relies on the capacity of the satellite stem cell (SC) population to exit quiescence, divide asymmetrically, proliferate, and differentiate. In age-related muscle atrophy (sarcopenia) and several dystrophies, regeneration cannot compensate for the loss of muscle tissue. These disorders are associated with the depletion of the satellite cell pool or with the loss of satellite cell functionality. Recently, the establishment and maintenance of quiescence in satellite cells have been linked to their metabolic state. In this work, we aimed to modulate metabolism in order to preserve the satellite cell pool. We made use of metformin, a calorie restriction mimicking drug, to ask whether metformin has an effect on quiescence, proliferation, and differentiation of satellite cells. We report that satellite cells, when treated with metformin in vitro, ex vivo, or in vivo, delay activation, Pax7 downregulation, and terminal myogenic differentiation. We correlate the metformin-induced delay in satellite cell activation with the inhibition of the ribosome protein RPS6, one of the downstream effectors of the mTOR pathway. Moreover, in vivo administration of metformin induces a belated regeneration of cardiotoxin- (CTX-) damaged skeletal muscle. Interestingly, satellite cells treated with metformin immediately after isolation are smaller in size and exhibit reduced pyronin Y levels, which suggests that metformin-treated satellite cells are transcriptionally less active. Thus, our study suggests that metformin delays satellite cell activation and differentiation by favoring a quiescent, low metabolic state.
Collapse
|
36
|
Saini J, Faroni A, Abd Al Samid M, Reid AJ, Lightfoot AP, Mamchaoui K, Mouly V, Butler-Browne G, McPhee JS, Degens H, Al-Shanti N. Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:1-9. [PMID: 30863121 PMCID: PMC6388735 DOI: 10.2147/sccaa.s187655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ. A simple and reproducible in vitro NMJ model may provide a robust means to study the impact of neurotrophic factors, growth factors, and hormones on NMJ formation, structure, and function. Methods This report characterizes a novel in vitro NMJ model utilizing immortalized human skeletal muscle stem cells seeded on 35 mm glass-bottom dishes, cocultured and innervated with spinal cord explants from rat embryos at ED 13.5. The cocultures were fixed and stained on day 14 for analysis and assessment of NMJ formation and development. Results This unique serum- and trophic factor-free system permits the growth of cholinergic motoneurons, the formation of mature NMJs, and the development of highly differentiated contractile myotubes, which exhibit appropriate configuration of transversal triads, representative of in vivo conditions. Conclusion This coculture system provides a tool to study vital features of NMJ formation, regulation, maintenance, and repair, as well as a model platform to explore neuromuscular diseases and disorders affecting NMJs.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marwah Abd Al Samid
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | | | - Jamie S McPhee
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK, .,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.,University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| |
Collapse
|
37
|
Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 2019; 8:cells8010053. [PMID: 30650618 PMCID: PMC6356905 DOI: 10.3390/cells8010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Aneta Kohutova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lenka Marková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
- 1st department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic.
| | - Tereza Jurakova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miriama Kruta
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Vrbsky
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Renata Gaillyova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Iveta Valášková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Ivan Frák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Giancarlo Forte
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| |
Collapse
|
38
|
Abd Al Samid M, McPhee JS, Saini J, McKay TR, Fitzpatrick LM, Mamchaoui K, Bigot A, Mouly V, Butler-Browne G, Al-Shanti N. A functional human motor unit platform engineered from human embryonic stem cells and immortalized skeletal myoblasts. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:85-93. [PMID: 30519053 PMCID: PMC6233953 DOI: 10.2147/sccaa.s178562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Although considerable research on neuromuscular junctions (NMJs) has been conducted, the prospect of in vivo NMJ studies is limited and these studies are challenging to implement. Therefore, there is a clear unmet need to develop a feasible, robust, and physiologically relevant in vitro NMJ model. Objective We aimed to establish a novel functional human NMJs platform, which is serum and neural complex media/neural growth factor-free, using human immortalized myoblasts and human embryonic stem cells (hESCs)-derived neural progenitor cells (NPCs) that can be used to understand the mechanisms of NMJ development and degeneration. Methods Immortalized human myoblasts were co-cultured with hESCs derived committed NPCs. Over the course of the 7 days myoblasts differentiated into myotubes and NPCs differentiated into motor neurons. Results Neuronal axon sprouting branched to form multiple NMJ innervation sites along the myotubes and the myotubes showed extensive, spontaneous contractile activity. Choline acetyltransferase and βIII-tubulin immunostaining confirmed that the NPCs had matured into cholinergic motor neurons. Postsynaptic site of NMJs was further characterized by staining dihydropyridine receptors, ryanodine receptors, and acetylcholine receptors by α-bungarotoxin. Conclusion We established a functional human motor unit platform for in vitro investigations. Thus, this co-culture system can be used as a novel platform for 1) drug discovery in the treatment of neuromuscular disorders, 2) deciphering vital features of NMJ formation, regulation, maintenance, and repair, and 3) exploring neuromuscular diseases, age-associated degeneration of the NMJ, muscle aging, and diabetic neuropathy and myopathy.
Collapse
Affiliation(s)
- Marwah Abd Al Samid
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Jamie S McPhee
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - Jasdeep Saini
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Tristan R McKay
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Lorna M Fitzpatrick
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | - Anne Bigot
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Nasser Al-Shanti
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| |
Collapse
|
39
|
Al Samid MA, Al-Shanti N, Odeh M. Motor Neuron-Skeletal Muscle Co Culture Model: A Potential Novel in Vitro and Computaional Platform to Investigate Cancer Cachexia. 2018 1ST INTERNATIONAL CONFERENCE ON CANCER CARE INFORMATICS (CCI) 2018. [DOI: 10.1109/cancercare.2018.8618261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Vita GL, Polito F, Oteri R, Arrigo R, Ciranni AM, Musumeci O, Messina S, Rodolico C, Di Giorgio RM, Vita G, Aguennouz M. Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS One 2018; 13:e0205514. [PMID: 30304034 PMCID: PMC6179272 DOI: 10.1371/journal.pone.0205514] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023] Open
Abstract
Hippo signaling pathway is considered a key regulator of tissue homeostasis, cell proliferation, apoptosis and it is involved in cancer development. In skeletal muscle, YAP, a downstream target of the Hippo pathway, is an important player in myoblast proliferation, atrophy/hypertrophy regulation, and in mechano-trasduction, transferring mechanical signals into transcriptional responses. We studied components of Hippo pathway in muscle specimens from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, limb-girdle muscular dystrophy type 2A and type 2B and healthy subjects. Only DMD muscles had decreased YAP1 protein expression, increased LATS1/2 kinase activity, low Survivin mRNA expression and high miR-21 expression. In light of our novel results, a schematic model is postulated: low levels of YOD1 caused by increased inhibition by miR-21 lead to an increase of LATS1/2 activity which in turn augments phosphorylation of YAP. Reduced amount of active YAP, which is also a target of increased miR-21, causes decreased nuclear expression of YAP-mediated target genes. Since it is known that YAP has beneficial roles in promoting tissue repair and regeneration after injury so that its activation may be therapeutically useful, our results suggest that some components of Hippo pathway could become novel therapeutic targets for DMD treatment.
Collapse
Affiliation(s)
- Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberto Arrigo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Anna Maria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sonia Messina
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosa Maria Di Giorgio
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - M’Hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
41
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
42
|
Motohashi N, Uezumi A, Asakura A, Ikemoto-Uezumi M, Mori S, Mizunoe Y, Takashima R, Miyagoe-Suzuki Y, Takeda S, Shigemoto K. Tbx1 regulates inherited metabolic and myogenic abilities of progenitor cells derived from slow- and fast-type muscle. Cell Death Differ 2018; 26:1024-1036. [PMID: 30154444 DOI: 10.1038/s41418-018-0186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Skeletal muscle is divided into slow- and fast-type muscles, which possess distinct contractile and metabolic properties. Myogenic progenitors associated with each muscle fiber type are known to intrinsically commit to specific muscle fiber lineage during embryonic development. However, it is still unclear whether the functionality of postnatal adult myogenic cells is attributable to the muscle fiber in which they reside, and whether the characteristics of myogenic cells derived from slow- and fast-type fibers can be distinguished at the genetic level. In this study, we isolated adult satellite cells from slow- and fast-type muscle individually and observed that satellite cells from each type of muscle generated myotubes expressing myosin heavy chain isoforms similar to their original muscle, and showed different metabolic features. Notably, we discovered that slow muscle-derived cells had low potential to differentiate but high potential to self-renew compared with fast muscle-derived cells. Additionally, cell transplantation experiments of slow muscle-derived cells into fast-type muscle revealed that slow muscle-derived cells could better contribute to myofiber formation and satellite cell constitution than fast muscle-derived cells, suggesting that the recipient muscle fiber type may not affect the predetermined abilities of myogenic cells. Gene expression analyses identified T-box transcriptional factor Tbx1 as a highly expressed gene in fast muscle-derived myoblasts. Gain- and loss-of-function experiments revealed that Tbx1 modulated muscle fiber types and oxidative metabolism in myotubes, and that Tbx1 stimulated myoblast differentiation, but did not regulate myogenic cell self-renewal. Our data suggest that metabolic and myogenic properties of myogenic progenitor cells vary depending on the type of muscle from which they originate, and that Tbx1 expression partially explains the functional differences of myogenic cells derived from fast-type and slow-type muscles.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan. .,Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Akiyoshi Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Madoka Ikemoto-Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Shuuichi Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Yuhei Mizunoe
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Rumi Takashima
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiro Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| |
Collapse
|
43
|
Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018; 9:1130. [PMID: 30246791 PMCID: PMC6113794 DOI: 10.3389/fphys.2018.01130] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.
Collapse
Affiliation(s)
- Babette Maleiner
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Janine Tomasch
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Trauma Care Consult GmbH, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Dominik Rünzler
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christiane Fuchs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
44
|
Pietraszek-Gremplewicz K, Kozakowska M, Bronisz-Budzynska I, Ciesla M, Mucha O, Podkalicka P, Madej M, Glowniak U, Szade K, Stepniewski J, Jez M, Andrysiak K, Bukowska-Strakova K, Kaminska A, Kostera-Pruszczyk A, Jozkowicz A, Loboda A, Dulak J. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Antioxid Redox Signal 2018; 29:128-148. [PMID: 29669436 DOI: 10.1089/ars.2017.7435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Muscle damage in Duchenne muscular dystrophy (DMD) caused by the lack of dystrophin is strongly linked to inflammation. Heme oxygenase-1 (HO-1; Hmox1) is an anti-inflammatory and cytoprotective enzyme affecting myoblast differentiation by inhibiting myomiRs. The role of HO-1 has not been so far well addressed in DMD. RESULTS In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1-/-mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Katarzyna Pietraszek-Gremplewicz
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Magdalena Kozakowska
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Iwona Bronisz-Budzynska
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Maciej Ciesla
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Olga Mucha
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Paulina Podkalicka
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Magdalena Madej
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Urszula Glowniak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Krzysztof Szade
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Jacek Stepniewski
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Mateusz Jez
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Kalina Andrysiak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Karolina Bukowska-Strakova
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland .,2 Department of Clinical Immunology and Transplantology, Institute of Paediatrics, Medical College, Jagiellonian University , Krakow, Poland
| | - Anna Kaminska
- 3 Department of Neurology, Medical University of Warsaw , Warsaw, Poland
| | | | - Alicja Jozkowicz
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Agnieszka Loboda
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Jozef Dulak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| |
Collapse
|
45
|
Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S, Diaz F, Rotundo RL, Carvalho RF, Moraes CT. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 2018; 17:e12707. [PMID: 29427317 PMCID: PMC5847875 DOI: 10.1111/acel.12707] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/31/2022] Open
Abstract
PGC-1α is a transcriptional co-activator known as the master regulator of mitochondrial biogenesis. Its control of metabolism has been suggested to exert critical influence in the aging process. We have aged mice overexpressing PGC-1α in skeletal muscle to determine whether the transcriptional changes reflected a pattern of expression observed in younger muscle. Analyses of muscle proteins showed that Pax7 and several autophagy markers were increased. In general, the steady-state levels of several muscle proteins resembled that of muscle from young mice. Age-related mtDNA deletion levels were not increased by the PGC-1α-associated increase in mitochondrial biogenesis. Accordingly, age-related changes in the neuromuscular junction were minimized by PGC-1α overexpression. RNA-Seq showed that several genes overexpressed in the aged PGC-1α transgenic are expressed at higher levels in young when compared to aged skeletal muscle. As expected, there was increased expression of genes associated with energy metabolism but also of pathways associated with muscle integrity and regeneration. We also found that PGC-1α overexpression had a mild but significant effect on longevity. Taken together, overexpression of PGC-1α in aged muscle led to molecular changes that resemble the patterns observed in skeletal muscle from younger mice.
Collapse
Affiliation(s)
- Sofia Garcia
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Nadee Nissanka
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Edson A. Mareco
- Graduate Program in Environment and Regional DevelopmentUniversity of Western São PauloPresidente PrudenteBrazil
| | - Susana Rossi
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Susana Peralta
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Francisca Diaz
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Richard L. Rotundo
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robson F. Carvalho
- Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrazil
| | - Carlos T. Moraes
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
46
|
Jevons LA, Houghton FD, Tare RS. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells. Regen Med 2018; 13:189-206. [PMID: 29557248 DOI: 10.2217/rme-2017-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics. This review summarizes methods for chondrogenic, osteogenic, myogenic and adipogenic differentiation of PSCs and their potential for therapeutic applications.
Collapse
Affiliation(s)
- Lauren A Jevons
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Mechanical Engineering, Faculty of Engineering & the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
47
|
Lim KRQ, Yokota T. Quantitative Evaluation of Exon Skipping in Immortalized Muscle Cells In Vitro. Methods Mol Biol 2018; 1828:127-139. [PMID: 30171538 DOI: 10.1007/978-1-4939-8651-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exon skipping through the use of antisense oligonucleotides (AOs) is currently one of the most promising approaches for treating Duchenne muscular dystrophy (DMD). While we now have a number of AO drug candidates in clinical trials, we are still faced with issues of poor or controversial efficacy in some of these drugs. This is the case with eteplirsen, an exon 51-skipping AO that is the first and only FDA-approved drug for DMD to date. Effective procedures must, therefore, be set up for the in vitro screening of potential AOs for DMD treatment. Here, we describe one such procedure using immortalized DMD patient-derived muscle cells. Aside from allowing for the quantitative evaluation of candidate AOs based on their exon skipping efficiency and dystrophin protein rescue levels, these immortalized cells are stable, pure, easy to grow, and not subject to confounding by senescence-related issues. This procedure enables a more reliable screening of AOs prior to their entry in clinical trials and greatly facilitates the search for more efficacious candidate exon skipping AOs for DMD treatment.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
48
|
Domenger C, Allais M, François V, Léger A, Lecomte E, Montus M, Servais L, Voit T, Moullier P, Audic Y, Le Guiner C. RNA-Seq Analysis of an Antisense Sequence Optimized for Exon Skipping in Duchenne Patients Reveals No Off-Target Effect. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:277-291. [PMID: 29499940 PMCID: PMC5785776 DOI: 10.1016/j.omtn.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 01/16/2023]
Abstract
Non-coding uridine-rich small nuclear RNAs (UsnRNAs) have emerged in recent years as effective tools for exon skipping for the treatment of Duchenne muscular dystrophy (DMD), a degenerative muscular genetic disorder. We recently showed the high capacity of a recombinant adeno-associated virus (rAAV)-U7snRNA vector to restore the reading frame of the DMD mRNA in the muscles of DMD dogs. We are now moving toward a phase I/II clinical trial with an rAAV-U7snRNA-E53, carrying an antisense sequence designed to hybridize exon 53 of the human DMD messenger. As observed for genome-editing tools, antisense sequences present a risk of off-target effects, reflecting partial hybridization onto unintended transcripts. To characterize the clinical antisense sequence, we studied its expression and explored the occurrence of its off-target effects in human in vitro models of skeletal muscle and liver. We presented a comprehensive methodology combining RNA sequencing and in silico filtering to analyze off-targets. We showed that U7snRNA-E53 induced the effective exon skipping of the DMD transcript without inducing the notable deregulation of transcripts in human cells, neither at gene expression nor at the mRNA splicing level. Altogether, these results suggest that the use of the rAAV-U7snRNA-E53 vector for exon skipping could be safe in eligible DMD patients.
Collapse
Affiliation(s)
- Claire Domenger
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France.
| | - Marine Allais
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Virginie François
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Adrien Léger
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Emilie Lecomte
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | | | - Laurent Servais
- Institute I-Motion, Hôpital Armand Trousseau, 75012 Paris, France
| | - Thomas Voit
- NIHR Biomedical Research Centre, UCL Institute of Child Health/Great Ormond Street Hospital NHS Trust, WC1N 1EH London, UK
| | - Philippe Moullier
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Yann Audic
- CNRS, UMR 6290 Institut Génétique et Développement de Rennes, Université de Rennes 1, 35000 Rennes, France
| | - Caroline Le Guiner
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France.
| |
Collapse
|
49
|
Ruiz-Del-Yerro E, Garcia-Jimenez I, Mamchaoui K, Arechavala-Gomeza V. Myoblots: dystrophin quantification by in-cell western assay for a streamlined development of Duchenne muscular dystrophy (DMD) treatments. Neuropathol Appl Neurobiol 2017; 44:463-473. [DOI: 10.1111/nan.12448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/11/2017] [Indexed: 12/01/2022]
Affiliation(s)
- E. Ruiz-Del-Yerro
- Neuromuscular Disorders Group; Biocruces Health Research Institute; Barakaldo Spain
| | - I. Garcia-Jimenez
- Neuromuscular Disorders Group; Biocruces Health Research Institute; Barakaldo Spain
| | - K. Mamchaoui
- Center for Research in Myology; UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617; Sorbonne Universités; Paris France
| | - V. Arechavala-Gomeza
- Neuromuscular Disorders Group; Biocruces Health Research Institute; Barakaldo Spain
| |
Collapse
|
50
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|