1
|
de Puig H, Bosch I, Salcedo N, Collins JJ, Hamad-Schifferli K, Gehrke L. Multiplexed rapid antigen tests developed using multicolored nanoparticles and cross-reactive antibody pairs: Implications for pandemic preparedness. NANO TODAY 2022; 47:101669. [PMID: 36348742 PMCID: PMC9632299 DOI: 10.1016/j.nantod.2022.101669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Global public health infrastructure is unprepared for emerging pathogen epidemics, in part because diagnostic tests are not developed in advance. The recent Zika, Ebola, and SARS-CoV-2 virus epidemics are cases in point. We demonstrate here that multicolored gold nanoparticles, when coupled to cross-reactive monoclonal antibody pairs generated from a single immunization regimen, can be used to create multiple diagnostics that specifically detect and distinguish related viruses. The multiplex approach for specific detection centers on immunochromatography with pairs of antibody-conjugated red and blue gold nanoparticles, coupled with clustering algorithms to detect and distinguish related pathogens. Cross-reactive antibodies were used to develop rapid tests for i) Dengue virus serotypes 1-4, ii) Zika virus, iii) Ebola and Marburg viruses, and iv) SARS-CoV and SARS-CoV-2 viruses. Multiplexed rapid antigen tests based on multicolored nanoparticles and cross-reactive antibodies and can be developed prospectively at low cost to improve preparedness for epidemic outbreaks.
Collapse
Affiliation(s)
- Helena de Puig
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, United States
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- IDx20, Newton, MA, United States
| | | | - James J Collins
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, United States
- Broad Institute of MIT and Harvard, Cambridge MA, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, United States
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Evaluation of New Polyclonal Antibody Developed for Serological Diagnostics of Tomato Mosaic Virus. Viruses 2022; 14:v14061331. [PMID: 35746802 PMCID: PMC9228224 DOI: 10.3390/v14061331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Plant viruses threaten agricultural production by reducing the yield, quality, and economical benefits. Tomato mosaic virus (ToMV) from the genus Tobamovirus causes serious losses in the quantity and quality of tomato production. The management of plant protection is very difficult, mainly due to the vector-less transmission of ToMV. Resistant breeding generally has low effectiveness. The most practical approach is the use of a rapid diagnostic assay of the virus' presence before the symptoms occur in plants, followed by the eradication of virus-infected plants. Such approaches also include serological detection methods (ELISA and Western immunoblotting), where antibodies need to be developed for an immunochemical reaction. The development and characterization of polyclonal antibodies for the detection of ToMV with appropriate parameters (sensitivity, specificity, and cross-reactivity) were the subjects of this study. A new polyclonal antibody, AB-1, was developed in immunized rabbits using the modified oligopeptides with antigenic potential (sequences are revealed) derived from the coat protein of ToMV SL-1. the developed polyclonal antibody. AB-1, showed higher sensitivity when compared with commercially available analogs. It also detected ToMV in infected pepper and eggplant plants, and detected another two tobamoviruses (TMV and PMMoV) and ToMV in soil rhizosphere samples and root residues, even two years after the cultivation of the infected tomato plant.
Collapse
|
3
|
Moharam I, Asala O, Reiche S, Hafez H, Beer M, Harder T, Grund C. Monoclonal antibodies specific for the hemagglutinin-neuraminidase protein define neutralizing epitopes specific for Newcastle disease virus genotype 2.VII from Egypt. Virol J 2021; 18:86. [PMID: 33902633 PMCID: PMC8072307 DOI: 10.1186/s12985-021-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Newcastle disease is a devastating disease in poultry caused by virulent Newcastle disease virus (NDV), a paramyxovirus endemic in many regions of the world despite intensive vaccination. Phylogenetic analyses reveal ongoing evolution of the predominant circulating genotype 2.VII, and the relevance of potential antigenic drift is under discussion. To investigate variation within neutralization-sensitive epitopes within the protein responsible for receptor binding, i.e. the Hemagglutinin-Neuraminidase (HN) spike protein, we were interested in establishing genotype-specific monoclonal antibodies (MAbs). Methods An HN-enriched fraction of a gradient-purified NDV genotype 2.VII was prepared and successfully employed to induce antibodies in BalbC mice that recognize conformationally intact sites reactive by haemagglutination inhibition (HI). For subsequent screening of mouse hybridoma cultures, an NDV-ELISA was established that utilizes Concanavalin A (ConA-ELISA) coupled glycoproteins proven to present conformation-dependent epitopes. Results Six out of nine selected MAbs were able to block receptor binding as demonstrated by HI activity. One MAb recognized an epitope only present in the homologue virus, while four other MAbs showed weak reactivity to selected other genotypes. On the other hand, one broadly cross-reacting MAb reacted with all genotypes tested and resembled the reactivity profile of genotype-specific polyclonal antibody preparations that point to minor antigenic differences between tested NDV genotpyes. Conclusions These results point to the concurrent presence of variable and conserved epitopes within the HN molecule of NDV. The described protocol should help to generate MAbs against a variety of NDV strains and to enable in depth analysis of the antigenic profiles of different genotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01540-0.
Collapse
Affiliation(s)
- Ibrahim Moharam
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany.,Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | - Olayinka Asala
- Viral Vaccines Production Division, National Veterinary Research Institute, Vom, Nigeria
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Hafez Hafez
- Institute of Poultry Disease, Freie Universität Berlin, Berlin, Germany
| | - Martin Beer
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
4
|
Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36. Viruses 2017; 9:v9110336. [PMID: 29125554 PMCID: PMC5707543 DOI: 10.3390/v9110336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.
Collapse
|
5
|
Tatineni S, Sarath G, Seifers D, French R. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods. J Virol Methods 2013; 189:196-203. [PMID: 23454646 DOI: 10.1016/j.jviromet.2013.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 11/18/2022]
Abstract
Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- USDA-ARS and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
6
|
Azimzadeh A, Pellequer JL, Van Regenmortel MH. Operational aspects of antibody affinity constants measured by liquid-phase and solid-phase assays. J Mol Recognit 1992; 5:9-18. [PMID: 1610615 DOI: 10.1002/jmr.300050103] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The association constant of monoclonal antibodies (Mabs) to tobacco mosaic virus has been determined in solution and solid-phase binding assays. The ELISA equilibrium titration method developed by Friguet et al. (1985) was found to be suitable for large antigens such as viruses. In the case of intact IgG antibody, it gave equilibrium constant (K) values ca 30% lower than those obtained by classical solution-phase assay while in the case of Fab', the same values were obtained in both assays. Solid-phase binding assays gave higher K values than solution-phase assays by a factor which varied with the Mab tested (1.5- to 5.4-fold higher). Furthermore, in solution-phase assay, K values were found to depend on the antibody concentration used in the assay. These results confirm the operational nature of antibody affinity constants and indicate that in order to compare the affinity of different Mabs in a meaningful way, it is necessary to use a single technique under standardized conditions.
Collapse
Affiliation(s)
- A Azimzadeh
- Laboratoire d'Immunochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
7
|
Porta C, Devergne JC, Cardin L, Briand JP, Van Regenmortel MH. Serotype specificity of monoclonal antibodies to cucumber mosaic virus. Arch Virol 1989; 104:271-85. [PMID: 2705879 DOI: 10.1007/bf01315549] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ten monoclonal antibodies (McAbs) against cucumber mosaic virus (CMV) have been raised from fusion experiments performed after immunizing mice with different CMV antigens. Their reactivities with members of the three CMV serotypes, CMV-DTL, CMV-ToRS, and CMV-Co were tested in a double antibody sandwich format of enzyme immunosorbent assay (ELISA). Several of the McAbs were specific for different members of the CMV-DTL and CMV-ToRS groups while two allowed the detection of CMV-Co. By using a mixture of two McAbs, any member of the three major CMV serotypes could be detected in infected plant sap. One of the antibodies made it possible to discriminate between subunits and whole virions of CMV-D when it was used in ELISA simultaneously as coating antibody and as biotin-conjugate. McAbs were shown to be useful for quantifying the amount of CMV present in plant sap.
Collapse
Affiliation(s)
- C Porta
- Laboratoire d'Immunochimie, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
8
|
Huguenot C, Givord L, Sommermeyer G, Van Regenmortel MH. Differentiation of peanut clump virus serotypes by monoclonal antibodies. RESEARCH IN VIROLOGY 1989; 140:87-102. [PMID: 2474190 DOI: 10.1016/s0923-2516(89)80087-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A panel of monoclonal antibodies (mAb) produced against peanut clump virus (PCV) was used to characterize five serotypes of the virus. Four different formats of enzyme-linked immunosorbent assays (ELISA) were compared to establish the most suitable one for diagnosis of infected plants and for serotype differentiation. Since most mAb retained their activity when used for coating microtitre plates, a dual mAb-type assay was found to be most suitable. The same mAb could be used in ELISA as coating and as biotinylated antibody. Because of the ability of mAb to recognize subtle conformational alterations in the viral antigen, it is important to carefully select the ELISA format used for comparing different viral isolates.
Collapse
Affiliation(s)
- C Huguenot
- Institut de Biologie moléculaire et cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
9
|
Kurstak E, Marusyk R, Salmi A, Babiuk L, Kurstak C, Van Regenmortel M. Detection of viral antigens and antibodies. Enzyme immunoassays. Subcell Biochem 1989; 15:1-37. [PMID: 2678615 DOI: 10.1007/978-1-4899-1675-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|