1
|
Wall ML, Lewis SM. Methylarginines within the RGG-Motif Region of hnRNP A1 Affect Its IRES Trans-Acting Factor Activity and Are Required for hnRNP A1 Stress Granule Localization and Formation. J Mol Biol 2016; 429:295-307. [PMID: 27979648 DOI: 10.1016/j.jmb.2016.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a stress granule-associated RNA-binding protein that plays a role in apoptosis and cellular stress recovery. HnRNP A1 is a major non-histone target of protein arginine methyltransferase 1, which asymmetrically dimethylates hnRNP A1 at several key arginine residues within its arginine-glycine-glycine (RGG)-motif region. Although arginine methylation is known to regulate general RNA binding of hnRNP A1 in vitro, the functional role of arginine methylation in hnRNP A1 cytoplasmic activity is unknown. To test the impact of key methylarginine residues on hnRNP A1 cytoplasmic activity and stress granule association, cytoplasmically restricted Flag-tagged mutants of hnRNP A1 were generated in which key methylarginine residues within the RGG-motif region were changed to either lysine or alanine. Lysine substitution, which mimics unmethylated arginine, resulted in a 40% increase in internal ribosome entry site trans-acting factor (ITAF) activity and the protein readily associates with stress granules. Alanine substitution resulted in a loss of ITAF activity and reduced mRNA binding. The alanine mutant also displays reduced stress granule association and suppresses stress granule formation. Our data suggest that arginine residues within the RGG-motif region are critical for hnRNP A1 cytoplasmic activities and that endogenous asymmetric dimethylation of the RGG-motif region suppresses hnRNP A1 ITAF activity in cells. Our findings indicate that methylarginine residues within the RGG-motif region of hnRNP A1 are important for its cytoplasmic activities and that hypomethylation and/or mutation of the RGG-motif region may contribute to the role of hnRNP A1 in diseases such as cancer.
Collapse
Affiliation(s)
- Michael L Wall
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.
| |
Collapse
|
2
|
Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 2012; 7:e38658. [PMID: 22761693 PMCID: PMC3380899 DOI: 10.1371/journal.pone.0038658] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization.
Collapse
|
3
|
Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S, Kundu TK. Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem 2009; 285:7143-52. [PMID: 20022955 DOI: 10.1074/jbc.m109.063933] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of the arginine residues of histones by methyltransferases has important consequences for chromatin structure and gene regulation; however, the molecular mechanism(s) of methyltransferase regulation is still unclear, as is the biological significance of methylation at particular arginine residues. Here, we report a novel specific inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1; also known as PRMT4) that selectively inhibits methylation at arginine 17 of histone H3 (H3R17). Remarkably, this plant-derived inhibitor, called TBBD (ellagic acid), binds to the substrate (histone) preferentially at the signature motif, "KAPRK," where the proline residue (Pro-16) plays a critical role for interaction and subsequent enzyme inhibition. In a promoter-specific context, inhibition of H3R17 methylation represses expression of p21, a p53-responsive gene, thus implicating a possible role for H3 Arg-17 methylation in tumor suppressor function. These data establish TBBD as a novel specific inhibitor of arginine methylation and demonstrate substrate sequence-directed inhibition of enzyme activity by a small molecule and its physiological consequence.
Collapse
Affiliation(s)
- B Ruthrotha Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The overall production of nitric oxide (NO) is decreased in chronic kidney disease (CKD) which contributes to cardiovascular events and further progression of kidney damage. There are many likely causes of NO deficiency in CKD and the areas surveyed in this review are: 1. Limitations on substrate (l-Arginine) availability, probably due to impaired renal l-Arginine biosynthesis, decreased transport of l-Arginine into endothelial cells and possible competition between NOS and competing metabolic pathways, such as arginase. 2. Increased circulating levels of endogenous NO synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Increased methylation of proteins and their subsequent breakdown to release free ADMA may contribute but the major culprit is probably reduced ADMA catabolism by the enzymes dimethylarginine dimethylaminohydrolases. 3. Reduced renal cortex abundance of the neuronal NOS (nNOS)α protein correlates with injury while increasing nNOSβ abundance may provide a compensatory, protective response. Interventions that can restore NO production by targeting these various pathways are likely to reduce the cardiovascular complications of CKD as well as slowing the rate of progression.
Collapse
|
5
|
Abstract
Methylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S-adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra- or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
6
|
Dolzhanskaya N, Merz G, Aletta JM, Denman RB. Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP. J Cell Sci 2007; 119:1933-46. [PMID: 16636078 DOI: 10.1242/jcs.02882] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating that methylation of FMRP affects its ability to bind to FXR1P and regulate the translation of FMRP target mRNAs. Additionally, using double-label fluorescence confocal microscopy, we identified a subpopulation of FMRP-containing small cytoplasmic granules that are distinguishable from larger stress granules. Using the oxidative-stress induced accumulation of abortive pre-initiation complexes as a measure of the association of FMRP with translational components, we have demonstrated that FMRP associates with ribosomes during initiation and, more importantly, that methylation regulates this process by influencing the ratio of FMRP-homodimer-containing mRNPs to FMRP-FXR1P-heterodimer-containing mRNPs. These data suggest a vital role for methylation in normal FMRP functioning.
Collapse
Affiliation(s)
- Natalia Dolzhanskaya
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
7
|
Mansure JJ, Furtado DR, de Oliveira FMB, Rumjanek FD, Franco GR, Fantappié MR. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism. Biochem Biophys Res Commun 2005; 335:1163-72. [PMID: 16129092 DOI: 10.1016/j.bbrc.2005.07.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/29/2005] [Indexed: 11/30/2022]
Abstract
The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions.
Collapse
Affiliation(s)
- José João Mansure
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Clemen CS, Fischer D, Roth U, Simon S, Vicart P, Kato K, Kaminska AM, Vorgerd M, Goldfarb LG, Eymard B, Romero NB, Goudeau B, Eggermann T, Zerres K, Noegel AA, Schröder R. Hsp27-2D-gel electrophoresis is a diagnostic tool to differentiate primary desminopathies from myofibrillar myopathies. FEBS Lett 2005; 579:3777-82. [PMID: 15978589 DOI: 10.1016/j.febslet.2005.05.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/10/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Small heat shock proteins prevent abnormal protein folding and accumulation. We analyzed the expression of hsp27 and alphaB-crystallin in skeletal muscle specimens of patients with desminopathies, plectinopathies, myotilinopathy, and other myofibrillar myopathies by means of differential centrifugation, 2D-gel electrophoresis, Western blotting, and mass spectrometry. Hsp27-P82 and -P15 as well as alphaB-crystallin-P59 and -P45 are the major serine phosphorylation isoforms in normal and diseased human skeletal muscle. 2D-gel-electrophoresis revealed spots of hsp27 in a range of pH 5.3-6.4 in samples of all skeletal muscle specimens, except for the seven desminopathies. They indicated a shift of the main hsp27-spot to alkaline pH degrees, which may help to differentiate primary desminopathies from other myopathies with structural pathology of the desmin cytoskeleton.
Collapse
Affiliation(s)
- Christoph S Clemen
- Department of Neurology, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53127 Bonn, FRG
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Larcher JC, Gasmi L, Viranaïcken W, Eddé B, Bernard R, Ginzburg I, Denoulet P. Ilf3 and NF90 associate with the axonal targeting element of Tau mRNA. FASEB J 2004; 18:1761-3. [PMID: 15364895 DOI: 10.1096/fj.04-1763fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In neurons, the selective translocation of Tau mRNA toward axons is due to the presence of a nucleotide sequence located in its 3' untranslated region and serving as axonal targeting element. Using this RNA sequence as a probe by a Northwestern approach, we have detected several proteins that interact with the targeting RNA element and could potentially be involved in Tau mRNA translocation, translation halting, and/or stabilization. Among them, two proteins were identified as the interleukin enhancer binding factor 3 (Ilf3) and NF90, two isoforms derived from a single gene product through alternative splicing. Each protein comprises two double-stranded RNA binding motifs that can interact with the predicted stem-loop secondary structure of the axonal targeting element. Specific antibodies raised against common or specific peptide sequences showed that both Ilf3 and NF90 are polymorphic proteins that are detected in neuronal nuclei and cell bodies, as well as in the proximal neuritic segments. This observation favors the idea that Ilf3 and NF90 are part of a protein complex that escorts Tau mRNA toward the axon.
Collapse
Affiliation(s)
- Jean-Christophe Larcher
- Biochimie Cellulaire-CNRS UMR 7098, Université Paris-6, 9 quai Saint-Bernard, Bâtiment C-Case 265, Paris 75252, Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Christian K, Lang M, Maurel P, Raffalli-Mathieu F. Interaction of heterogeneous nuclear ribonucleoprotein A1 with cytochrome P450 2A6 mRNA: implications for post-transcriptional regulation of the CYP2A6 gene. Mol Pharmacol 2004; 65:1405-14. [PMID: 15155834 DOI: 10.1124/mol.65.6.1405] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human xenobiotic-metabolizing enzyme cytochrome P450, CYP2A6, catalyzes the bioactivation of a number of carcinogens and drugs and is overexpressed in cases of liver diseases, such as cirrhosis, viral hepatitis, and parasitic infestation, and in certain tumor cells. This suggests that CYP2A6 may be a major liver catalyst in pathological conditions. In the present study, we have addressed molecular mechanisms underlying the regulation of the CYP2A6 gene. We present evidence of several proteins present in human hepatocytes that interact specifically with the 3'-untranslated region (UTR) of CYP2A6 mRNA. Biochemical and immunological evidence show that the RNA-protein complex of highest intensity contains the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 or a closely related protein. Mapping of the hnRNP A1 binding site within CYP2A6 3'-UTR reveals that the smallest portion of RNA supporting significant binding consists of 111 central nucleotides of the 3'-UTR. Our studies also indicate that hnRNPA1 from HepG2 cancer cells exhibits modified binding characteristics to the CYP2A6 3'-UTR compared with primary hepatocytes. We found that the level of CYP2A6 mRNA remains high in conditions of impaired transcription in primary human hepatocytes, showing that CYP2A6 expression can be affected post-transcriptionally in conditions of cellular stress. Our results indicate that the post-transcriptional regulation involves interaction of the hnRNP A1 protein with CYP2A6 mRNA. The present data suggest that hnRNPA1 is a critical regulator of expression of the human CYP2A6 gene and support the notion that this P450 isoform may be of particular significance in stressed human liver cells.
Collapse
Affiliation(s)
- Kyle Christian
- Department of Pharmaceutical Biosciences, Division of Biochemistry, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
11
|
Auboeuf D, Dowhan DH, Li X, Larkin K, Ko L, Berget SM, O'Malley BW. CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol 2004; 24:442-53. [PMID: 14673176 PMCID: PMC303353 DOI: 10.1128/mcb.24.1.442-453.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that steroid hormones coordinately control gene transcriptional activity and splicing decisions in a promoter-dependent manner. Our hypothesis is that a subset of hormonally recruited coregulators involved in regulation of promoter transcriptional activity also directly participate in alternative RNA splicing decisions. To gain insight into the molecular mechanisms by which transcriptional coregulators could control splicing decisions, we focused our attention on a recently identified coactivator, CoAA. This heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein interacts with the transcriptional coregulator TRBP, a protein recruited to target promoters through interactions with activated nuclear receptors. Using transcriptional and splicing reporter genes driven by different promoters, we observed that CoAA mediates transcriptional and splicing effects in a promoter-preferential manner. We compared the activity of CoAA to the activity of other hnRNP-related proteins that, like CoAA, contain two N-terminal RNA recognition motifs (RRMs) followed by a C-terminal auxiliary domain and either have or have not been implicated in transcriptional control. By swapping either CoAA RRMs or the CoAA auxiliary domain with the corresponding domains of the proteins selected, we showed that depending on the promoter, the RRMs and the auxiliary domain of CoAA are differentially engaged in transcription. This contributes to the promoter-preferential effects mediated by CoAA on RNA splicing during the course of steroid hormone action.
Collapse
Affiliation(s)
- Didier Auboeuf
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J Mol Biol 2000; 303:329-44. [PMID: 11023796 DOI: 10.1006/jmbi.2000.4136] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea. In this reaction methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B. The crystal structures of methyl-coenzyme M reductase from Methanosarcina barkeri (growth temperature optimum, 37 degrees C) and Methanopyrus kandleri (growth temperature optimum, 98 degrees C) were determined and compared with the known structure of MCR from Methanobacterium thermoautotrophicum (growth temperature optimum, 65 degrees C). The active sites of MCR from M. barkeri and M. kandleri were almost identical to that of M. thermoautotrophicum and predominantly occupied by coenzyme M and coenzyme B. The electron density at 1.6 A resolution of the M. barkeri enzyme revealed that four of the five modified amino acid residues of MCR from M. thermoautotrophicum, namely a thiopeptide, an S-methylcysteine, a 1-N-methylhistidine and a 5-methylarginine were also present. Analysis of the environment of the unusual amino acid residues near the active site indicates that some of the modifications may be required for the enzyme to be catalytically effective. In M. thermoautotrophicum and M. kandleri high temperature adaptation is coupled with increasing intracellular concentrations of lyotropic salts. This was reflected in a higher fraction of glutamate residues at the protein surface of the thermophilic enzymes adapted to high intracellular salt concentrations.
Collapse
Affiliation(s)
- W Grabarse
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
13
|
De Busser HM, Van Dessel GA, Lagrou AR. Identification of prenylcysteine carboxymethyltransferase in bovine adrenal chromaffin cells. Int J Biochem Cell Biol 2000; 32:1007-16. [PMID: 11084380 DOI: 10.1016/s1357-2725(00)00036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromaffin cells from bovine adrenal medulla were examined for the presence of a specific prenylcysteine carboxymethyltransferase by using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine as artificial substrates and a crude cell homogenate as the enzyme source. From Michaelis-Menten kinetics the following constants were calculated: K(m) 90 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-farnesyl-L-cysteine; K(m) 52 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-geranylgeranyl-L-cysteine. Both substrates were methylated to an optimal extent at the pH range 7. 4-8.0. Methylation activity increased linearly up to 20 min incubation time and was dose dependent up to at least 160 microg of protein. Sinefungin and S-adenosylhomocysteine both caused pronounced inhibition, as also to a lesser extent did farnesylthioacetic acid, deoxymethylthioadenosine and 3-deaza-adenosine. Effector studies showed that the methyltransferase activity varied depending on the concentration and chemical nature of the cations present. Monovalent cations were slightly stimulatory, while divalent metallic ions displayed diverging inhibitory effects. The inhibition by cations was validated by the stimulatory effect of the chelators EDTA and EGTA. Sulphydryl reagents inhibited methylation but to different degrees: Hg(2+)-ions: 100%, N-ethylmaleimide: 30%, dithiothreitol: 0% and mono-iodoacetate: 20%. Due to the hydrophobicity of the substrates dimethyl sulfoxide had to be included in the incubation mixture (<4%; still moderate inhibition at more elevated concentrations). The detergents tested affected the methyltransferase activity to a varying degree. The membrane bound character of the methyltransferase was confirmed.
Collapse
Affiliation(s)
- H M De Busser
- RUCA-Laboratory for Human Biochemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | |
Collapse
|
14
|
Selmer T, Kahnt J, Goubeaud M, Shima S, Grabarse W, Ermler U, Thauer RK. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. J Biol Chem 2000; 275:3755-60. [PMID: 10660523 DOI: 10.1074/jbc.275.6.3755] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The global production of the greenhouse gas methane by methanogenic archaea reaches 1 billion tons per annum. The final reaction releasing methane is catalyzed by the enzyme methyl-coenzyme M reductase. The crystal structure of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum revealed the presence of five modified amino acids within the alpha-subunit and near the active site region. Four of these modifications were C-, N-, and S-methylations, two of which, 2-(S)-methylglutamine and 5-(S)-methylarginine, have never been encountered before. We have now confirmed these modifications by mass spectrometry of chymotryptic peptides. With methyl-coenzyme M reductase purified from cells grown in the presence of L-[methyl-D(3)]methionine, it was shown that the methyl groups of the modified amino acids are derived from the methyl group of methionine rather than from methyl-coenzyme M, an intermediate in methane formation. The D(3) labeling pattern was found to be qualitatively and quantitatively the same as in the two methyl groups of the methanogenic coenzyme F(430), which are known to be introduced via S-adenosylmethionine. From the results, it is concluded that the methyl groups of the modified amino acids in methyl-coenzyme M reductase are biosynthetically introduced by an S-adenosylmethionine-dependent post-translational modification. A mechanism for the methylation of glutamine at C-2 and of arginine at C-5 is discussed.
Collapse
Affiliation(s)
- T Selmer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 2000; 20:1370-81. [PMID: 10648622 PMCID: PMC85287 DOI: 10.1128/mcb.20.4.1370-1381.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.
Collapse
Affiliation(s)
- L Pintard
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France
| | | | | |
Collapse
|