1
|
Manzoor S, Nabi SU, Baranwal VK, Verma MK, Parveen S, Rather TR, Raja WH, Shafi M. Overview on century progress in research on mosaic disease of apple (Malus domestica Borkh) incited by apple mosaic virus/apple necrotic mosaic virus. Virology 2023; 587:109846. [PMID: 37586234 DOI: 10.1016/j.virol.2023.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Apple mosaic is widely distributed disease throughout the apple growing regions leading to the major adverse effects both qualitatively and quantitatively. Earlier the apple mosaic virus-ApMV was regarded as the only causal agent of the disease, but recently a novel virus apple necrotic mosaic virus-ApNMV have been reported as the causal pathogen from various apple growing countries. Accurate diagnosis of disease and detection of ApMV and ApNMV are of utmost importance, because without this ability we can neither understand nor control this disease. Both the viruses are mostly controlled through quarantine, isolation, sanitation and certification programs depending on sensitive and specific detection methods available. Here we review the 100-year progress in research on apple mosaic disease, which includes history, yield losses, causal agents, their genome organization, replication, traditional to recent detection methods, transmission, distribution and host range of associated viruses and management of the disease.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India.
| | | | - Mahendra K Verma
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Shugufta Parveen
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Tariq Rasool Rather
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025, India
| | - Wasim H Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Mansoor Shafi
- Department of Plant Resources and Environment, Jeju National University, Jeju-si, 63243, Republic of Korea
| |
Collapse
|
2
|
Çelik A, Morca AF, Coşkan S, Santosa AI. Global Population Structure of Apple Mosaic Virus (ApMV, Genus Ilarvirus). Viruses 2023; 15:1221. [PMID: 37376521 DOI: 10.3390/v15061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
The gene sequence data for apple mosaic virus (ApMV) in NCBI GenBank were analyzed to determine the phylogeny and population structure of the virus at a global level. The phylogenies of the movement protein (MP) and coat protein (CP) genes, encoded by RNA3, were shown to be identical and consisted of three lineages but did not closely correlate with those of P1 and P2, suggesting the presence of recombinant isolates. Recombination Detection Program (RDP v.4.56) detected significant recombination signal in the P1 region of K75R1 (KY883318) and Apple (HE574162) and the P2 region of Apple (HE574163) and CITH GD (MN822138). Observation on several diversity parameters suggested that the isolates in group 3 had higher divergence among them, compared to isolates in groups 1 and 2. The neutrality tests assigned positive values to P1, indicating that only this region experiencing balanced or contracting selection. Comparisons of the three phylogroups demonstrated high Fixation index (FST) values and confirmed genetic separation and the lack of gene flow among them. Additionally, ±500 bp of partial MP + 'intergenic region' + partial CP coding regions of two Turkish isolates from apple and seven from hazelnut were sequenced and determined that their phylogenetic positions fell within group 1 and 3, respectively.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14030 Bolu, Türkiye
- Scientifical Industrial and Technological Application and Research Center, Bolu Abant İzzet Baysal University, 14030 Bolu, Türkiye
| | - Ali Ferhan Morca
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, 06172 Ankara, Türkiye
| | - Sevgi Coşkan
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, 06172 Ankara, Türkiye
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
3
|
Determination of Protein Interactions among Replication Components of Apple Necrotic Mosaic Virus. Viruses 2020; 12:v12040474. [PMID: 32331324 PMCID: PMC7232516 DOI: 10.3390/v12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Apple mosaic disease is one of the most widely distributed and destructive diseases in apple cultivation worldwide, especially in China, whose apple yields account for more than 50% of the global total. Apple necrotic mosaic virus (ApNMV) is a newly identified ilarvirus that is closely associated with apple mosaic disease in China; however, basic viral protein interactions that play key roles in virus replication and the viral life cycle have not been determined in ApNMV. Here, we first identify an ApNMV–Lw isolate that belongs to subgroup 3 in the genus Ilarvirus. ApNMV–Lw was used to investigate interactions among viral components. ApNMV 1a and 2apol, encoded by RNA1 and RNA2, respectively, were co-localized in plant cell cytoplasm. ApNMV 1a interacted with itself at both the inter- and intramolecular levels, and its N-terminal portion played a key role in these interactions. 1a also interacted with 2apol, and 1a’s C-terminal, together with 2apol’s N-terminal, was required for this interaction. Moreover, the first 115 amino acids of 2apol were sufficient for permitting the 1a–2apol interaction. This study provides insight into the protein interactions among viral replication components of ApNMV, facilitating future investigations on its pathogenicity, as well as the development of strategies to control the virus and disease.
Collapse
|
4
|
The Incidence and Genetic Diversity of Apple Mosaic Virus (ApMV) and Prune Dwarf Virus (PDV) in Prunus Species in Australia. Viruses 2018; 10:v10030136. [PMID: 29562672 PMCID: PMC5869529 DOI: 10.3390/v10030136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 01/17/2023] Open
Abstract
Apple mosaic virus (ApMV) and prune dwarf virus (PDV) are amongst the most common viruses infecting Prunus species worldwide but their incidence and genetic diversity in Australia is not known. In a survey of 127 Prunus tree samples collected from five states in Australia, ApMV and PDV occurred in 4 (3%) and 13 (10%) of the trees respectively. High-throughput sequencing (HTS) of amplicons from partial conserved regions of RNA1, RNA2, and RNA3, encoding the methyltransferase (MT), RNA-dependent RNA polymerase (RdRp), and the coat protein (CP) genes respectively, of ApMV and PDV was used to determine the genetic diversity of the Australian isolates of each virus. Phylogenetic comparison of Australian ApMV and PDV amplicon HTS variants and full length genomes of both viruses with isolates occurring in other countries identified genetic strains of each virus occurring in Australia. A single Australian Prunus infecting ApMV genetic strain was identified as all ApMV isolates sequence variants formed a single phylogenetic group in each of RNA1, RNA2, and RNA3. Two Australian PDV genetic strains were identified based on the combination of observed phylogenetic groups in each of RNA1, RNA2, and RNA3 and one Prunus tree had both strains. The accuracy of amplicon sequence variants phylogenetic analysis based on segments of each virus RNA were confirmed by phylogenetic analysis of full length genome sequences of Australian ApMV and PDV isolates and all published ApMV and PDV genomes from other countries.
Collapse
|
5
|
Grimová L, Winkowska L, Ryšánek P, Svoboda P, Petrzik K. Reflects the coat protein variability of apple mosaic virus host preference? Virus Genes 2013; 47:119-25. [PMID: 23740269 DOI: 10.1007/s11262-013-0925-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
Abstract
Apple mosaic virus (ApMV) is a widespread ssRNA virus which infects diverse species of Rosales. The phylogenetic analysis of complete capsid protein gene of the largest set of ApMV isolates discriminated two main clusters of isolates: one cluster correlates with Maloideae hosts and Trebouxia lichen algae hosts; a second with hop, Prunus, and other woody tree hosts. No correlation was found between clusters and geographic origin of virus isolates, and positive selection hypothesis in distinct hosts was not confirmed: in all virus populations, purifying selection had occurred. GGT→AAT substitution resulted in Gly→Asn change inside the zinc-finger motif in the capsid protein was revealed specific for discrimination of the clusters and we hypothesise that could influence the host preference.
Collapse
Affiliation(s)
- L Grimová
- Department of Crop Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
6
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
7
|
Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA. Ilarviruses of Prunus spp.: a continued concern for fruit trees. PHYTOPATHOLOGY 2012; 102:1108-1120. [PMID: 23148725 DOI: 10.1094/phyto-02-12-0023-rvw] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.
Collapse
Affiliation(s)
- V Pallas
- Instituto de Biologia Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo, Spain.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lakshmi V, Hallan V, Ram R, Ahmed N, Zaidi AA, Varma A. Diversity of Apple mosaic virus Isolates in India Based on Coat Protein and Movement Protein Genes. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2011; 22:44-9. [PMID: 23637501 DOI: 10.1007/s13337-011-0036-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/07/2011] [Indexed: 11/30/2022]
Abstract
Apple mosaic virus (ApMV), an Ilarvirus is one of the most common pathogens of apple worldwide. During field surveys in commercial plantations of Himachal Pradesh and Jammu & Kashmir, observations of bright chlorotic mosaic like symptoms on apple trees indicated probable infection by the virus, which was later detected by double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA). An incidence of 24 and 28% (based on ELISA) was obtained as 6/25 and 15/53 samples from HP and J&K were positive, respectively. An amplification of approximately 700 and 850 bp was obtained for coat and movement protein genes (CP and MP), respectively. The CP was 223 amino acids in length and showed 87-99% identity when compared to 21 ApMV isolates. Whereas, MP (286 amino acids) showed 91-95% identity with other isolates. However, the gene sequences were quite conserved among Indian isolates and grouped together phylogenetically. CP of the Indian isolates showed maximum identity of 95% with Korean isolate (AY 125977) in apple and in other host these showed a maximum identity of 98% to Czech Republic pear isolate. MP showed maximum identity with Chinese isolate i.e., 95%. The diversity study will also help in analyzing variability among the isolates and also to formulate diagnostic and resistance strategies.
Collapse
Affiliation(s)
- Vijay Lakshmi
- Plant Virology Lab, Institute of Himalayan Bioresource Technology, (Council of Scientific and Industrial Research), Palampur, 176061 Himachal Pradesh India
| | | | | | | | | | | |
Collapse
|
9
|
Martin RR, Tzanetakis IE. Characterization and Recent Advances in Detection of Strawberry Viruses. PLANT DISEASE 2006; 90:384-396. [PMID: 30786583 DOI: 10.1094/pd-90-0384] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR and Oregon State University, Corvallis
| | - Ioannis E Tzanetakis
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR and Oregon State University, Corvallis
| |
Collapse
|
10
|
Aparicio F, Pallás V. The molecular variability analysis of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus sheds light on the minimal requirements for the synthesis of its subgenomic RNA. Virus Genes 2003; 25:75-84. [PMID: 12206311 DOI: 10.1023/a:1020126309692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequences of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus (PNRSV) varying in the symptomatology they cause in six different Prunus spp. were determined. Analysis of the molecular variability has allowed, in addition to study the phylogenetic relationships among them, to evaluate the minimal requirements for the synthesis of the subgenomic RNA in Ilarvirus genus and their comparison to other members of the Bromoviridae family. Computer assisted comparisons led recently to Jaspars (Virus Genes 17, 233-242, 1998) to propose that a hairpin structure in viral minus strand RNA is required for subgenomic promoter activity of viruses from at least two, and possibly all five, genera in the family of Bromoviridae. For PNRSV and Apple mosaic virus two stable hairpins were proposed whereas for the rest of Ilarviruses and the other four genera of the Bromoviridae family only one stable hairpin was predicted. Comparative analysis of this region among the fifteen PNRSV isolates characterized in this study revealed that two of them showed a 12-nt deletion that led to the disappearance of the most proximal hairpin to the initiation site. Interestingly, the only hairpin found in these two isolates is very similar in primary and secondary structure to the one previously shown in Brome mosaic virus to be required for the synthesis of the subgenomic RNA. In this hairpin, the molecular diversity was concentrated mostly at the loop whereas compensatory mutations were observed at the base of the stem strongly suggesting its functional relevance. The evolutionary implications of these observations are discussed.
Collapse
Affiliation(s)
- Frederic Aparicio
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Spain
| | | |
Collapse
|
11
|
Saade M, Aparicio F, Sánchez-Navarro JA, Herranz MC, Myrta A, Di Terlizzi B, Pallás V. Simultaneous detection of the three ilarviruses affecting stone fruit trees by nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction. PHYTOPATHOLOGY 2000; 90:1330-6. [PMID: 18943373 DOI: 10.1094/phyto.2000.90.12.1330] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT The three most economically damaging ilarviruses affecting stone fruit trees on a worldwide scale are the related Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), and Apple mosaic virus (ApMV). Nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction (RT-PCR) methodologies were developed that could detect all these viruses simultaneously. The latter technique was advantageous because it was discriminatory. For RT-PCR, a degenerate antisense primer was designed which was used in conjunction with three virus-specific sense primers. The amplification efficiencies for the detection of the three viruses in the multiplex RT-PCR reaction were identical to those obtained in the single RT-PCR reactions for individual viruses. This cocktail of primers was able to amplify sequences from all of the PNRSV, ApMV, and PDV isolates tested in five Prunus spp. hosts (almond, apricot, cherry, peach, and plum) occurring naturally in single or multiple infections. For ApMV isolates, differences in the electrophoretic mobilities of the PCR products were observed. The nucleotide sequence of the amplified products of two representative ApMV isolates was determined, and comparative analysis revealed the existence of a 28-nucleotide deletion in the sequence of isolates showing the faster electrophoretic mobility. To our knowledge, this is the first report on the simultaneous detection of three plant viruses by multiplex RT-PCR in woody hosts. This multiplex RT-PCR could be a useful time and cost saving method for indexing these three ilarviruses, which damage stone fruit tree yields, and for the analysis of mother plants in certification programs.
Collapse
|
12
|
Shiel PJ, Berger PH. The complete nucleotide sequence of apple mosaic virus (ApMV) RNA 1 and RNA 2: ApMV is more closely related to alfalfa mosaic virus than to other ilarviruses. J Gen Virol 2000; 81:273-8. [PMID: 10640567 DOI: 10.1099/0022-1317-81-1-273] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequences of apple mosaic virus RNA 1 and 2 have been characterized. Apple mosaic virus RNA 1 is 3476 nucleotides in length and encodes a single large open reading frame (ORF), whereas apple mosaic virus RNA 2 is 2979 nucleotides in length and also encodes a single ORF. The amino acid sequences encoded by RNA 1 and 2 show similarity to all of the other ilarviruses for which sequence data are available, but both are more closely related to alfalfa mosaic virus (AMV) than to other ilarviruses. Points of similarity include the absence of ORF 2b, present on the RNA 2 of all previously characterized ilarviruses. The close relationship to AMV also occurs in the movement protein, encoded by RNA 3, but not with the coat protein. These data suggest that the present taxonomy should be revised, and that AMV should be considered an aphid-transmissible ilarvirus.
Collapse
Affiliation(s)
- P J Shiel
- Plant Pathology Division/Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | | |
Collapse
|
13
|
Aparicio F, Myrta A, Di Terlizzi B, Pallás V. Molecular Variability Among Isolates of Prunus Necrotic Ringspot Virus from Different Prunus spp. PHYTOPATHOLOGY 1999; 89:991-999. [PMID: 18944653 DOI: 10.1094/phyto.1999.89.11.991] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Viral sequences amplified by polymerase chain reaction from 25 isolates of Prunus necrotic ringspot virus (PNRSV), varying in the symptomatology they cause in six different Prunus spp., were analyzed for restriction fragment polymorphisms. Most of the isolates could be discriminated by using a combination of three different restriction enzymes. The nucleotide sequences of the RNA 4 of 15 of these isolates were determined. Sequence comparisons and phylogenetic analyses of the RNA 4 and coat proteins (CPs) revealed that all of the isolates clustered into three different groups, represented by three previously sequenced PNRSV isolates: PV32, PE5, and PV96. The PE5-type group was characterized by a 5' untranslated region that was clearly different from that of the other two groups. The PV32-type group was characterized by an extra hexanucleotide consisting of a duplication of the six immediately preceding nucleotides. Although most of the variability was observed in the first third of the CP, the amino acid residues in this region, which were previously thought to be functionally important in the replication cycle of the virus, were strictly conserved. No clear correlation with the type of symptom or host specificity could be observed. The validity of this grouping was confirmed when other isolates recently characterized by other authors were included in these analyses.
Collapse
|
14
|
Jaspars EM. A core promoter hairpin is essential for subgenomic RNA synthesis in alfalfa mosaic alfamovirus and is conserved in other Bromoviridae. Virus Genes 1999; 17:233-42. [PMID: 9926399 DOI: 10.1023/a:1008065704102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequence immediately in front of the initiation site for subgenomic RNA 4 synthesis on RNA 3 minus strand, which has been proved to function as a core promoter, was inspected for secondary structure in 26 species of the plant virus family Bromoviridae. In 23 cases a stable hairpin could be predicted at a distance of 3 to 8 nucleotides from the initiation site of RNA 4. This hairpin contained several conserved nucleotides that are essential for core promoter activity in brome mosaic virus (R.W. Siegel, S. Adkins and C.C. Kao, Proc. Natl. Acad. Sci. USA 94, 11238-11243, 1997). Phylogenetic evidence and evidence from the effect of artificial mutations reported in the literature (E.A.G. van der Vossen, T. Notenboom and J.F. Bol, Virology 212, 663-672, 1995) indicate that the stem-loop structure is essential for promoter activity in alfalfa mosaic virus and probably in other Bromoviridae. Stability of the hairpin is most pronounced in the genera Alfamovirus and Ilarvirus which display genome activation by coat protein. The hypothesis is put forward that with these viruses the coat protein is needed for the viral RNA polymerase to interact with the core promoter hairpin leading to access for the enzyme to the initiation site of RNA 4.
Collapse
Affiliation(s)
- E M Jaspars
- Institute of Molecular Plant Sciences, Gorlaeus Laboratories, Leiden University, The Netherlands.
| |
Collapse
|
15
|
Xin HW, Ji LH, Scott SW, Symons RH, Ding SW. Ilarviruses encode a Cucumovirus-like 2b gene that is absent in other genera within the Bromoviridae. J Virol 1998; 72:6956-9. [PMID: 9658153 PMCID: PMC109913 DOI: 10.1128/jvi.72.8.6956-6959.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We found that RNA 2 of the four ilarviruses sequenced to date encodes an additional conserved open reading frame (ORF), 2b, that overlaps the 3' end of the previously known ORF, 2a. A novel RNA species of 851 nucleotides was found to accumulate to high levels in plants infected with spinach latent virus (SpLV). Further analysis showed that RNA 4A is a subgenomic RNA of RNA 2 and encodes all of ORF 2b. Moreover, a protein species of the size expected for SpLV ORF 2b was translated in vitro from the RNA 4A-containing virion RNAs. The data support the suggestion that the SpLV 2b protein is translated in vivo. The 2b gene of ilarviruses, which is not encoded by alfamoviruses and bromoviruses, shares several features with the previously reported cucumovirus 2b gene; however, their encoded proteins share no detectable sequence similarities. The evolutionary origin of the 2b gene is discussed.
Collapse
Affiliation(s)
- H W Xin
- Molecular Virology Laboratory, Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604
| | | | | | | | | |
Collapse
|
16
|
Ge X, Scott SW. The nucleotide sequence of hydrangea mosaic virus RNA 3 exhibits similarity with the RNA 3 of tobacco streak virus. Virus Res 1996; 40:57-63. [PMID: 8725121 DOI: 10.1016/0168-1702(95)01251-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complete nucleotide sequence of the RNA 3 of hydrangea mosaic virus (HdMV) was determined. It consists of 2268 nucleotides and contains two open reading frames (ORF). ORF 1 encodes for a putative translation product of 293 amino acids which shared 64.9% identity with the 3a protein of tobacco streak virus (TSV). ORF 2 encodes for a putative translation product of 220 amino acids which shared 54.2% identity with the coat protein of TSV. The relationship between the proteins of HdMV and the corresponding proteins of ilarviruses other than TSV was more distant. No zinc-finger-like motif was found in the coat protein of HdMV but the N-terminus of the protein was rich in basic amino acids. Both terminal, non-coding regions of HdMV RNA 3 contained repeated sequences with corresponding homologous fragments in the RNA 3 of TSV. On the basis of the similarities between HdMV and TSV that we detected, we propose that HdMV be included in subgroup 1 of the genus Ilarvirus together with TSV.
Collapse
Affiliation(s)
- X Ge
- Department of Plant Pathology and Physiology, Clemson University, SC 29634-0377, USA
| | | |
Collapse
|