1
|
Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 2014; 89:1-37. [PMID: 24751193 DOI: 10.1016/b978-0-12-800172-1.00001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and tobacco mosaic virus (TMV) CP-tobacco mild green mosaic virus (TMGMV) CP as expression vectors into tobacco plants. Expressed recombinant protein has not only been confirmed as a therapeutic but also as a diagnostic tool. Herpes simplex virus 2 (HSV-2), HSV-2 gD, and HSV-2 VP16 subunits were transfected into tobacco plants, using TMV CP-TMGMV CP expression vectors.
Collapse
Affiliation(s)
- Aboul-Ata E Aboul-Ata
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Ahmad K El-Attar
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Giuseppina Piazzolla
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Cosimo Tortorella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Olof Olson
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Sandra A Wright
- Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
2
|
Kim JH, Lee JE, Kim HY. Duplex polymerase chain reaction method for detection of unapproved genetically modified tomato (Solanum lycopersicon L.) with cucumber mosaic virus (CMV) satellite RNA gene. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean. Arch Virol 2011; 157:375-7. [PMID: 22038072 PMCID: PMC3268982 DOI: 10.1007/s00705-011-1154-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/17/2011] [Indexed: 12/02/2022]
Abstract
Cucumber mosaic virus (CMV) was consistently recovered from symptomatic snap bean plants during surveys conducted in 2007 and 2008 in central Wisconsin. A large proportion of these CMV-infected plants contained a single-stranded linear RNA molecule consisting of 339 nucleotides and sharing 90–94% sequence identity with other satellite (sat) RNAs of CMV. Comparison of this satRNA sequence with currently available CMV satRNA sequences suggests this to be a novel satRNA.
Collapse
|
4
|
Nuzzaci M, Bochicchio I, De Stradis A, Vitti A, Natilla A, Piazzolla P, Tamburro AM. Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J Virol Methods 2009; 155:118-21. [PMID: 18992770 DOI: 10.1016/j.jviromet.2008.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
The Cucumber mosaic virus (CMV) is a three-component isodiametric plant virus with an extremely wide host range, present worldwide. A pseudorecombinant form has been described, deriving from the RNA3 component of the CMV-S strain, carrying the coat protein (CP) gene, and the RNA 1, 2 components of the CMV-D strain. The CP gene was then engineered to express one or two copies of a synthetic peptide derived from many hypervariable region 1 (HVR1) sequences of the Hepatitis C virus (HCV) envelope protein E2 (the so-called R9 mimotope). Study of the symptoms pattern displayed in tobacco by these chimeric CMV particles, together with determination of their structural characteristics, assessed by circular dichroism (CD) spectroscopy and electron microscopy, revealed a possible relationship between the biological behavior and the structural properties of virus components.
Collapse
Affiliation(s)
- M Nuzzaci
- Department of Biology, Plant Protection and Agrobiotechnology, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Cillo F, Pasciuto MM, De Giovanni C, Finetti-Sialer MM, Ricciardi L, Gallitelli D. Response of tomato and its wild relatives in the genus Solanum to cucumber mosaic virus and satellite RNA combinations. J Gen Virol 2007; 88:3166-3176. [PMID: 17947544 DOI: 10.1099/vir.0.83110-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The differential response of 29 genotypes of tomato and wild tomato relatives (Solanum section Lycopersicon species) to cucumber mosaic virus strain Fny (CMV-Fny), alone or in combination with three different satellite RNA (satRNA) variants, allowed the identification of four disease phenotype patterns, each including plants that developed very severe symptoms (leaf malformations, top stunting and lethal necrosis) and plants that remained asymptomatic. No resistance or tolerance to CMV-Fny was observed, whilst individual host genotypes displayed latent infection upon inoculation with one (CMV-Fny/Tfn-satRNA, phenotype patterns 1 and 4), two (CMV-Fny/Tfn-satRNA and CMV-Fny/TTS-satRNA, phenotype pattern 2) or all three (the former two plus CMV-Fny/77-satRNA, phenotype pattern 3) CMV/satRNA combinations. RNA gel-blot analyses showed that latent infection generally correlated with a strong downregulation of CMV RNA accumulation levels. Introgression lines derived from a cross between Solanum habrochaites LA1777, which displayed disease phenotype pattern 2, and Solanum lycopersicum were screened for tolerance to the stunting phenotype induced by CMV-Fny/TTS-satRNA, and only one line, carrying an introgression on chromosome 6, was identified as being partially tolerant. Solanum chilense LA1932xS. lycopersicum back-cross introgression lines were screened for tolerance to lethal necrosis induced by CMV-Fny/77-satRNA (phenotype pattern 3); the tolerant phenotype was observed in 33 % of plants of the BC(1)F(2) progeny and <1 % of plants of the BC(1)F(3) progeny. Thus, potentially useful sources of tolerance to CMV/satRNA-induced diseases were identified, although the tolerant phenotypes appeared to be controlled by complex quantitative trait loci.
Collapse
Affiliation(s)
- F Cillo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, and CNR, Istituto di Virologia Vegetale, Via Amendola 165/A, 70126 Bari, Italy
| | - M M Pasciuto
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, and CNR, Istituto di Virologia Vegetale, Via Amendola 165/A, 70126 Bari, Italy
| | - C De Giovanni
- Dipartimento di Biologia e Chimica AgroForestale ed Ambientale, Sez. di Genetica e Miglioramento Genetico, Università degli Studi di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - M M Finetti-Sialer
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, and CNR, Istituto di Virologia Vegetale, Via Amendola 165/A, 70126 Bari, Italy
| | - L Ricciardi
- Dipartimento di Biologia e Chimica AgroForestale ed Ambientale, Sez. di Genetica e Miglioramento Genetico, Università degli Studi di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - D Gallitelli
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, and CNR, Istituto di Virologia Vegetale, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
6
|
Matousek J, Kozlová P, Orctová L, Schmitz A, Pesina K, Bannach O, Diermann N, Steger G, Riesner D. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biol Chem 2007; 388:1-13. [PMID: 17214544 DOI: 10.1515/bc.2007.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Strong viroid-caused pathogenesis was achieved in tomato cv. Rutgers by biolistic transfer of severe or lethal potato spindle tuber viroid (PSTVd) strains, while other tomato genotypes (e.g., Moneymaker) were tolerant. With reciprocal hybrids between sensitive and tolerant genotypes, we show that plant depression dominates over tolerance. Biolistic transfer of the most pathogenic PSTVd strain AS1 to Nicotiana benthamiana, which is considered to be a symptomless PSTVd host, led to a strong pathogenesis reaction and stunting, suggesting the presence of specific viroid pathogenesis-promoting target(s) in this plant species. Total levels of small siRNA-like PSTVd-specific RNAs were enhanced in strongly symptomatic tomato and N. benthamiana plants after biolistic infection with AS1 in comparison to the mild QFA strain. This indicates association of elevated levels of viroid-specific small RNA with production of strong symptoms. In symptom-bearing tomato leaves in comparison to controls, an RNase of approximately 18 kDa was induced and the activity of a nuclease of 34 kDa was elevated by a factor of seven in the vascular system. Sequence analysis of the nuclease cDNA designated TBN1 showed high homology with plant apoptotic endonucleases. The vascular-specific pathogenesis action is supported by light microscopic observations demonstrating a certain lack of xylem tissue and an arrest of the establishment of new vascular bundles in collapsed plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biolistics/methods
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Endonucleases/genetics
- Endonucleases/metabolism
- Genotype
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/virology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/virology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Viruses/genetics
- Plant Viruses/pathogenicity
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Viroids/genetics
- Viroids/pathogenicity
Collapse
Affiliation(s)
- Jaroslav Matousek
- Department of Molecular Genetics, Biological Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Branisovská 31, CZ-37005 Ceské Budĕjovice, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cillo F, Finetti-Sialer MM, Papanice MA, Gallitelli D. Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:98-108. [PMID: 14714873 DOI: 10.1094/mpmi.2004.17.1.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic tomato (Lycopersicon esculentum Mill. cv. UC82) plants expressing a benign variant of Cucumber mosaic virus satellite RNA (CMV Tfn-satRNA) were generated. The transformed plants did not produce symptoms when challenged with a satRNA-free strain of CMV (CMV-FL). The same plant lines initially were susceptible to necrosis elicited by a CMV strain supporting a necrogenic variant of satRNA (CMV-77), but a phenotype of total recovery from the necrosis was observed in the newly developing leaves. The features of the observed resistance were analyzed and are consistent with two different mechanisms of resistance. In transgenic plants inoculated with CMV-FL strain, the symptomless phenotype was correlated to the down-regulation of CMV by Tfn-satRNA, amplified from the transgene transcripts, as the first resistance mechanism. On the other hand, the delayed resistance to CMV-77 in transgenic tomato lines was mediated by a degradation process that targets satRNAs in a sequence-specific manner. Evidence is provided for a correlation between a reduced accumulation level of transgenic messenger Tfn-satRNA, the accumulation of small (approximately 23 nucleotides) RNAs with sequence homology to satRNAs, the progressively reduced accumulation of 77-satRNA in infected tissues, and the transition in infected plants from diseased to healthy. Thus, events leading to the degradation of satRNA sequences indicate a role for RNA silencing as the second mechanism determining resistance of transgenic tomato lines.
Collapse
Affiliation(s)
- Fabrizio Cillo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR-sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|
8
|
Abstract
An account is given of the ecology of Cucumber mosaic virus (CMV) as a pertinent example of how a virus can affect the sustainability of an important crop. It is now generally accepted that the technologies used in modern agriculture should ensure that production systems are operated in such a way that the quality of the produce is maintained year after year without causing degradation of the environment. Recent experiences in countries of the Mediterranean basin demonstrate that the benefits expected from the introduction of new and highly productive plant varieties may be quickly eroded by the concomitant introduction of new virus strains which can greatly change the structure of the resident virus population. Quarantine inspection of plant propagules and genetic engineering are suggested as powerful tools to help achieve sustainability.
Collapse
Affiliation(s)
- D Gallitelli
- Dipartimento di Protezione delle Piante dalle Malattie, Università degli Studi and Centro di Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, Via Amendola 165/A, 76126, Bari, Italy.
| |
Collapse
|
9
|
García-Arenal F, Palukaitis P. Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr Top Microbiol Immunol 1999; 239:37-63. [PMID: 9893368 DOI: 10.1007/978-3-662-09796-0_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- F García-Arenal
- Departamento de Biotecnología, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, Spain
| | | |
Collapse
|
10
|
Grieco F, Lanave C, Gallitelli D. Evolutionary dynamics of cucumber mosaic virus satellite RNA during natural epidemics in Italy. Virology 1997; 229:166-74. [PMID: 9123858 DOI: 10.1006/viro.1996.8426] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The evolutionary dynamics of 22 variants of cucumber mosaic virus satellite RNA (CMV satRNA) isolated in Italy during virus epidemics from 1988 to 1993 were investigated on the basis of their primary structure and biological properties. Most of the variants were amplified from total nucleic acid preparations extracted from field-infected plants, thus representing wild isolates of CMV satRNA. Eleven variants were associated with subgroup II CMV strains, 10 with subgroup I and 1 with a mixed infection by both strains. When inoculated onto tomato seedlings, the variants induced the phenotype (necrogenic or ameliorative) predicted by their nucleotide sequence. Phylogenetic relationships between the satRNA variants were determined using the stationary Markov model, a stochastic model for evolution. For each satRNA, the Markov analysis gave a good correlation between position in the phylogenetic tree and biological properties. The variants with ameliorative and necrogenic phenotypes in tomato followed two different evolutionary dynamics in nature. Tfn-satRNA, a 390-nt-long molecule, followed a third type of evolutionary dynamic far apart from that of the shorter satRNA molecules (i.e., those in the 334- to 340-nt-length class). Average values of the mean constant rate of nucleotide substitutions/site (Ksubs/site) indicated that in nature the variants tend to keep their heterogeneity unchanged from one epidemic episode to the other, even if the outbreaks occur in places very far from each other. This seems to be in agreement with the proposed maintenance of a functional molecular structure as a constraint to CMV satRNA evolution.
Collapse
Affiliation(s)
- F Grieco
- Dipartimento di Protezione delle Piante dalle Malattie, Università degli Studi, Bari, Italy
| | | | | |
Collapse
|