1
|
Bessueille L, Kawtharany L, Quillard T, Goettsch C, Briolay A, Taraconat N, Balayssac S, Gilard V, Mebarek S, Peyruchaud O, Duboeuf F, Bouillot C, Pinkerton A, Mechtouff L, Buchet R, Hamade E, Zibara K, Fonta C, Canet-Soulas E, Millan JL, Magne D. Inhibition of alkaline phosphatase impairs dyslipidemia and protects mice from atherosclerosis. Transl Res 2023; 251:2-13. [PMID: 35724933 DOI: 10.1016/j.trsl.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.
Collapse
Affiliation(s)
- Laurence Bessueille
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Lynn Kawtharany
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Thibaut Quillard
- CNRS, INSERM, l'institut du thorax, Nantes Université, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen University, Aachen Germany
| | - Anne Briolay
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Nirina Taraconat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Saida Mebarek
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | | | | | | | | | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France; CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - René Buchet
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de Toulouse, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | | | - David Magne
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France.
| |
Collapse
|
2
|
Briolay A, Bessueille L, Magne D. TNAP: A New Multitask Enzyme in Energy Metabolism. Int J Mol Sci 2021; 22:ijms221910470. [PMID: 34638808 PMCID: PMC8509042 DOI: 10.3390/ijms221910470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is mainly known for its necessary role in skeletal and dental mineralization, which relies on the hydrolysis of the mineralization inhibitor inorganic pyrophosphate (PPi). Mutations in the gene encoding TNAP leading to severe hypophosphatasia result in strongly reduced mineralization and perinatal death. Fortunately, the relatively recent development of a recombinant TNAP with a bone anchor has allowed to correct the bone defects and prolong the life of affected babies and children. Researches on TNAP must however not be slowed down, because accumulating evidence indicates that TNAP activation in individuals with metabolic syndrome (MetS) is associated with enhanced cardiovascular mortality, presumably in relation with cardiovascular calcification. On the other hand, TNAP appears to be necessary to prevent the development of steatohepatitis in mice, suggesting that TNAP plays protective roles. The aim of the present review is to highlight the known or suspected functions of TNAP in energy metabolism that may be associated with the development of MetS. The location of TNAP in liver and its function in bile excretion, lipopolysaccharide (LPS) detoxification and fatty acid transport will be presented. The expression and function of TNAP in adipocyte differentiation and thermogenesis will also be discussed. Given that TNAP is a tissue- and substrate-nonspecific phosphatase, we believe that it exerts several crucial pathophysiological functions that are just beginning to be discovered.
Collapse
|
3
|
Juenemann K, Reits EA. Alternative macroautophagic pathways. Int J Cell Biol 2012; 2012:189794. [PMID: 22536246 PMCID: PMC3320029 DOI: 10.1155/2012/189794] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 12/16/2022] Open
Abstract
Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways.
Collapse
Affiliation(s)
- Katrin Juenemann
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric A. Reits
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chida K, Taguchi M. Localization of Alkaline Phosphatase and Cathepsin D during Cell Restoration after Colchicine Treatment in Primary Cultures of Fetal Rat Hepatocytes. Acta Histochem Cytochem 2011; 44:155-8. [PMID: 21753861 PMCID: PMC3130147 DOI: 10.1267/ahc.10037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 01/21/2023] Open
Abstract
Localization of alkaline phosphatase (ALP) and cathepsin D (CAPD) in primary cultures of fetal rat hepatocytes was examined using double immunofluorescent staining in order to investigate the relationship between lysosome movement and the fate of ALP during cell restoration after microtubule disruption by colchicine. At 3 hr and 24 hr after colchicine treatment, numerous coarse dots containing ALP were observed throughout the cytoplasm, and some of these showed colocalization with CAPD. At 48 hr and 72 hr after colchicine treatment, although most of the dots containing ALP in the cytoplasm disappeared, dots containing CAPD remained. The present results suggest that the denatured ALP proteins remaining in the cytoplasm of hepatocytes during cell restoration after colchicine treatment are digested by lysosomes.
Collapse
Affiliation(s)
- Kohsuke Chida
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| | - Meiko Taguchi
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| |
Collapse
|
5
|
Liquori GE, Mastrodonato M, Rossi R, Scillitani G, Gena P, Portincasa P, Calamita G, Ferri D. Altered membrane glycoprotein targeting in cholestatic hepatocytes. Eur J Clin Invest 2010; 40:393-400. [PMID: 20345930 DOI: 10.1111/j.1365-2362.2010.02273.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatocytes are polarized epithelial cells with three morphologically and functionally distinct membrane surfaces: the sinusoidal, lateral and canalicular surface domains. These domains differ from each other in the expression of integral proteins, which concur to their polarized functions. We hypothesize that the cholestasis-induced alterations led to partial loss of hepatocyte polarity. An altered expression of membrane proteins may be indicative of functional disorders. Alkaline liver phosphatase (ALP), one of the most representative plasma membrane glycoproteins in hepatocytes, is expressed at the apical (canalicular) pole of the cell. Because the release of ALP protein in the bloodstream is significantly increased in cholestasis, the enzymatic levels of plasma ALP have major relevance in the diagnosis of cholestatic diseases. Here we assess the cholestasis-induced redistribution of membrane glycoproteins to investigate the ALP release. MATERIALS AND METHODS We performed enzymatic histochemistry, immunohistochemistry, lectin histochemistry, immunogold and lectin-and immunoblotting studies. Experimental cholestasis was induced in rats by ligation of common bile duct (BDL). RESULTS The BDL led to altered membrane sialoglycoprotein targeting as well as to ultrastructural and functional disorders. Disarrangement of the microtubular system, thickening of the microfilamentous pericanalicular ectoplasm and disturbance of the vectorial trafficking of membrane glycoprotein containing vesicles were found. CONCLUSIONS Altogether, results indicate that the cholestasis-induced partial loss of hepatocyte cell polarity leads to mistranslocation of ALP to the sinusoidal plasma membrane from where the enzyme is then massively released into the bloodstream.
Collapse
|
6
|
Luo S, Chen Q, Cebollero E, Xing D. Mitochondria: one of the origins for autophagosomal membranes? Mitochondrion 2009; 9:227-31. [PMID: 19398041 DOI: 10.1016/j.mito.2009.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 01/07/2023]
Abstract
Macroautophagy is a transport pathway to the lysosome/vacuole that contributes to the degradation of numerous intracellular components. Despite the recent advances achieved in the understanding of the molecular mechanism underlying macroautophagy, the membrane origin of autophagosomes, the hallmark of this process is still a mystery. It has been suggested that mitochondria may be one of the lipid sources for autophagosome formation and that possibly this organelle provides the phosphatidylethanolamine (PE) that covalently links to the members of the ubiquitin-like Atg8/microtubule-associated protein 1 light chain 3 (LC3) protein family. These lipidated proteins are inserted into the outer and inner surface of autophagosomes and are essential for the biogenesis of these large double-membrane vesicles. However, because PE is an integral component of all cellular membranes, designing appropriate experiments to determine the origin of the autophagosomal PE is not easy. In this review, we discuss the idea that mitochondria provide the pool of PE necessary for the autophagosome biogenesis and we propose some possible experimental approaches aimed to explore this possibility.
Collapse
Affiliation(s)
- Shiming Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | | | |
Collapse
|
7
|
Taguchi M, Chida K. Effects of colchicine on localization of alkaline phosphatase in McA-RH 7777 rat hepatoma cells. Acta Histochem Cytochem 2008; 41:149-55. [PMID: 19180199 PMCID: PMC2629550 DOI: 10.1267/ahc.08009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 09/19/2008] [Indexed: 11/22/2022] Open
Abstract
We investigated the changes caused by microtubule disruption in cell contact-induced translocation of alkaline phosphatase (ALP) from the Golgi area to the plasma membrane in McA-RH 7777 cells. When the cells were treated with colchicine, the tubular structure of microtubules in the cytoplasm was lost. Colchicine treatment also resulted in the appearance of numerous dots containing mannosidase II (man II) throughout the cytoplasm. Moreover, ALP was distributed in small dots throughout the cytoplasm, as well as in all regions of the plasma membrane, although it was most concentrated at sites of intercellular contact. On the other hand, when the cells were incubated in basal medium after colchicine treatment, large spots containing ALP reappeared in the perinuclear cytoplasm more quickly than the accumulation of small dots containing man II. These findings suggest that colchicine causes disassembly of the Golgi complex into fragments, which scatter throughout the cytoplasm, but that it does not interfere with translocation of ALP to the plasma membrane. Furthermore, cytoplasmic ALP may be localized at sites other than the Golgi complex.
Collapse
Affiliation(s)
- Meiko Taguchi
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| | - Kohsuke Chida
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| |
Collapse
|
8
|
Chida K, Taguchi M. Change in localization of alkaline phosphatase and mannosidase II by colchicine treatment of primary cultures of fetal rat hepatocytes. Acta Histochem Cytochem 2008; 41:1-5. [PMID: 18320021 PMCID: PMC2259249 DOI: 10.1267/ahc.07010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 12/25/2007] [Indexed: 02/04/2023] Open
Abstract
We examined the changes in localization of alkaline phosphatase (ALP) and mannosidase II (man II), a Golgi marker, after colchicine treatment of primary cultures of fetal rat hepatocytes, using double immunofluorescence staining and confocal laser microscopy. In hepatocytes cultured in basal medium, ALP was localized in the perinuclear cytoplasm, and man II was observed in the Golgi region of the cytoplasm. When hepatocytes were cultured in dexamethasone-supplemented medium, ALP was also localized in the plasma membrane surrounding the bile canaliculus-like structure that was formed between adjacent cells. In hepatocytes cultured in the same medium containing colchicine, the structure of microtubules in the cytoplasm was lost, man II exhibited granular distribution scattering throughout the cytoplasm, and ALP was localized in coarse granular sites of the cytoplasm. However, ALP was not colocalized at the same sites as man II. The present study indicated that colchicine inhibits the dexamethasone-promoted translocation of ALP to the plasma membrane surrounding the bile canaliculus-like structure in primary cultures of fetal rat hepatocytes by disassembling microtubules and discomposing the Golgi complex.
Collapse
Affiliation(s)
- Kohsuke Chida
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| | - Meiko Taguchi
- Department of Anatomy, School of Allied Health Sciences, Kitasato University
| |
Collapse
|
9
|
Abstract
Autophagy is a degradative transport route conserved among all eukaryotic organisms. During starvation, cytoplasmic components are randomly sequestered into large double-membrane vesicles called autophagosomes and delivered into the lysosome/vacuole where they are destroyed. Cells are able to modulate autophagy in response to their needs, and under certain circumstances, cargoes, such as aberrant protein aggregates, organelles, and bacteria can be selectively and exclusively incorporated into autophagosomes. As a result, this pathway plays an active role in many physiological processes, and it is induced in numerous pathological situations because of its ability to rapidly eliminate unwanted structures. Despite the advances in understanding the functions of autophagy and the identification of several factors, named Atg proteins that mediate it, the mechanism that leads to autophagosome formation is still a mystery. A major challenge in unveiling this process arises from the fact that the origin and the transport mode of the lipids employed to compose these structures is unknown. This compendium will review and analyze the current data about the possible membrane source(s) with a particular emphasis on the yeast Saccharomyces cerevisiae, the leading model organism for the study of autophagosome biogenesis, and on mammalian cells. The information acquired investigating the pathogens that subvert autophagy in order to replicate in the host cells will also be discussed because it could provide important hints for solving this mystery.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
10
|
Chida K, Taguchi M. Localization of alkaline phosphatase and proteins related to intercellular junctions in primary cultures of fetal rat hepatocytes. ACTA ACUST UNITED AC 2005; 210:75-80. [PMID: 16133592 DOI: 10.1007/s00429-005-0015-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The localization of alkaline phosphatase (ALP) and four proteins related to intercellular junctions in primary cultures of fetal rat hepatocytes was immunocytochemically investigated using fluorescence-labeled antibodies and confocal laser microscopy in order to determine whether the formation of intercellular junctions at the borders between adjacent rat hepatocytes becomes the trigger of translocation of ALP from the cytoplasm to the plasma membrane. Dexamethasone (DEX) which was supplemented in the base medium promoted the translocation of ALP from the cytoplasm to the plasma membrane surrounding bile canaliculus-like intercellular spaces and the appearance of connexin-32 at cell borders between adjacent fetal hepatocytes. E-cadherin, occludin and ZO-1 were localized at the cell borders between adjacent fetal hepatocytes irrespective of the presence of DEX. Occludin and ZO-1 were further localized along the plasma membrane surrounding bile canaliculus-like intercellular spaces formed by DEX. The present study indicates that the formation of adherens and tight junctions between adjacent rat hepatocytes does not become the trigger of ALP translocation from the cytoplasm to the plasma membrane, although we cannot be certain of whether the formation of gap junctions between adjacent rat hepatocytes triggers ALP translocation.
Collapse
Affiliation(s)
- Kohsuke Chida
- Department of Anatomy, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
11
|
Wu MK, Hyogo H, Yadav SK, Novikoff PM, Cohen DE. Impaired response of biliary lipid secretion to a lithogenic diet in phosphatidylcholine transfer protein-deficient mice. J Lipid Res 2005; 46:422-31. [PMID: 15576839 DOI: 10.1194/jlr.m400387-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic lipid transfer protein that is highly expressed in liver and catalyzes intermembrane transfer of phosphatidylcholines in vitro. To explore a role for PC-TP in the hepatocellular trafficking of biliary phosphatidylcholines, we characterized biliary lipid secretion using Pctp(-/-) and wild-type littermate control mice with C57BL/6J and FVB/NJ genetic backgrounds, which express PC-TP at relatively high and low levels in liver, respectively. Eight-week-old male Pctp(-/-) and wild-type mice were fed a chow diet or a lithogenic diet, which served to upregulate biliary lipid secretion. In chow-fed mice, the absence of PC-TP did not reduce biliary phospholipid secretion or alter the phospholipid composition of biles. However, the responses in secretion of biliary phospholipids, cholesterol, and bile salts to the lithogenic diet were impaired in Pctp(-/-) mice from both genetic backgrounds. Alterations in biliary lipid secretion could not be attributed to transcriptional regulation of the expression of canalicular membrane lipid transporters, but possibly to a defect in their trafficking to the canalicular membrane. These findings support a role for PC-TP in the response of biliary lipid secretion to a lithogenic diet, but not specifically in the hepatocellular transport and secretion of phosphatidylcholines.
Collapse
Affiliation(s)
- Michele K Wu
- Department of Biochemistry, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
12
|
Chida K, Taguchi M. Localization of alkaline phosphatase and proteins related to intercellular junctions in rat hepatoma cell line McA-RH 7777. J Histochem Cytochem 2004; 52:979-83. [PMID: 15208364 DOI: 10.1369/jhc.3b6220.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the localization of alkaline phosphatase (ALP) and three proteins related to intercellular junctions in the McA-RH 7777 rat hepatoma cell line to determine if the formation of junctions between adjacent McA-RH 7777 cells triggers translocation of ALP from cytoplasm to the plasma membrane. Contact between adjacent McA-RH 7777 cells promotes translocation of ALP from the Golgi area of the cytoplasm to the plasma membrane, and also promotes translocation of two proteins, E-cadherin and ZO-1, related to intercellular junctions, from cytoplasm to the plasma membrane.
Collapse
Affiliation(s)
- Kohsuke Chida
- Department of Anatomy, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | | |
Collapse
|
13
|
Song JY, Van Noorden CJ, Frederiks WM. The involvement of altered vesicle transport in redistribution of Ca2+, Mg2+-ATPase in cholestatic rat liver. THE HISTOCHEMICAL JOURNAL 1998; 30:909-16. [PMID: 10100733 DOI: 10.1023/a:1003455608511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vectorial sorting of plasma membrane protein-containing vesicles is essential for the establishment and maintenance of cell polarity. In the present study, the involvement of altered vesicle transport in the redistribution of membrane-bound Ca2+, Mg2+-ATPase resulting from cholestasis was investigated in hepatocytes. Cholestasis was induced in rat liver by common bile duct ligation. Ca2+, Mg2+-ATPase activity was demonstrated histochemically at the light and electron microscopical levels. Microtubules, an important factor for transcellular transport of vesicles, were studied in situ by immunofluorescence microscopy and electron microscopy in detergent-extracted preparations. The results showed that microtubules underwent significant changes after common bile duct ligation. The most pronounced alteration was focal accumulation of beta-tubulin in the cytoplasm of hepatocytes after 7 days of common bile duct ligation. At the electron microscopical level, the number of microtubules was increased considerably. In control livers, the activity of Ca2+, Mg2+-ATPase was localized only at the apical plasma membrane of hepatocytes, but it was also present at the basolateral plasma membrane after common bile duct ligation. The number of intracellular vesicles containing Ca2+, Mg2+-ATPase activity was increased strikingly, and some of them were associated with lateral membrane domains in which Ca2+, Mg2+-ATPase activity was found. It is concluded that common bile duct ligation induces the rearrangement of microtubules, which may disturb vectorial transport of Ca2+, Mg2+-ATPase-containing vesicles in hepatocytes, leading to the redistribution of Ca2+, Mg2+-ATPase.
Collapse
Affiliation(s)
- J Y Song
- Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| | | | | |
Collapse
|
14
|
Araki N, Takashima Y, Makita T. Redistribution and fate of colchicine-induced alkaline phosphatase in rat hepatocytes: possible formation of autophagosomes whose membrane is derived from excess plasma membrane. Histochem Cell Biol 1995; 104:257-65. [PMID: 8548559 DOI: 10.1007/bf01464321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The redistribution and fate of colchicine-induced alkaline phosphatase (ALPase) in rat hepatocytes were investigated by electron microscopic enzyme cytochemistry and biochemistry. ALPase activity markedly increased in rat hepatocytes after colchicine treatment (2.0 mg/kg body weight, intraperitoneal injection). At 20-24 h after colchicine treatment, the liver showed the highest activity of ALPase. Thereafter, ALPase activity decreased and returned to normal levels at 48 h. In normal hepatocytes from control rats, ALPase activity was seen only on the bile canalicular membrane. However, at 20-24 h after colchicine treatment, colchicine-induced ALPase was redistributed in the sinusoidal and lateral (basolateral) membranes as well as in the bile canalicular membrane. At 30-36 h after colchicine treatment, ALPase activity on the basolateral membrane gradually decreased. In contrast, ALPase in the bile canalicular membrane increased along with the enlargement of bile canaliculi, suggesting that ALPase in the basolateral membrane had been transported to the bile canalicular membrane. Furthermore, ALPase-positive vesicles, cisternae and autophagosome-like structures were frequently seen in the cytoplasm. ALPase was also positive in some lysosomal membranes. ALPase in hepatocytes at 48 h after colchicine treatment returned to almost the same location as in control hepatocytes. Altogether, it is suggested that excessively induced ALPase is at least partially retrieved by invagination of the bile canalicular membrane and then transported to lysosomes for degradation. In addition, this study indicates that excess plasma membrane might be a possible origin of autophagosomal membrane.
Collapse
Affiliation(s)
- N Araki
- Department of Anatomy, Ehime University School of Medicine, Japan
| | | | | |
Collapse
|