Runge M, Ehlers E, Pantlen H, Luckmann E. [The adaptation of AV-nodal conduction time on gliding increase and decrease of atrial frequency before and after autonomic blockade (author's transl)].
Basic Res Cardiol 1979;
74:321-47. [PMID:
475737 DOI:
10.1007/bf01907749]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 19 patients with healthy AV-nodes the adaptation of the intranodal conduction time (A-H time) to gliding increase and decrease in atrial frequency and to the blockade of the autonomic nervous system was investigated using His bundle electrograms. The measurements were performed during right atrial stimulation with three frequencies, each with a duration of one minute, before and after blockade of the parasympathetic (8 pat.; 1 mg atropine i.v.) and the sympathetic (11 pat.; 0.4 mg Visken i.v.) nervous system. Gliding increase and decrease in atrial frequency results in a staircase pattern of A-H-adaptation in 18 of the patients. The height of the steps was identical in both phases of stimulation in each individual patient. One patient showed functional dissociation of intranodal conduction which was different during increase and decrease of atrial frequency. With parasympathetic blockade the staircase behavior of the A-H time basically remained unchanged with the exception of shorter A-H intervals resulting in lower steps. Atropine abolished the functional dissociation of intranodal conduction; thus the drug might prevent reentrytachycardias due to functional dissociation in the AV-node. Sympathetic blockade lengthens the intranodal conduction time; thus shifting the staircase pattern of the A-H time to higher levels. The results are discussed with respect to the electrophysiological characteristics of AV nodal cells as slow response fibers, and to the changes caused by atrial stimulation, acetylcholine and adrenaline.
Collapse