1
|
Ruddle NH, Li CB, Tang WL, Gray PW, McGrath KM. Lymphotoxin: cloning, regulation and mechanism of killing. CIBA FOUNDATION SYMPOSIUM 2007; 131:64-82. [PMID: 3502460 DOI: 10.1002/9780470513521.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gene for murine lymphotoxin (MuLT) has been cloned from a cDNA library prepared using poly(A)+ RNA from an activated murine IL-2-maintained cloned T cell line (21C11). This was accomplished with a MuLT BamHI fragment isolated from a murine genomic library by hybridization to a human LT cDNA probe. Northern blot analysis with RNA from 21C11, an L3T4+ (CD4+-equivalent) ovalbumin-specific class II-restricted T cell line, revealed a 15S band that hybridized to this MuLT fragment. A cDNA library prepared with poly(A)+ RNA from 21C11 cells contained 36 colonies that hybridized with the MuLT BamHI fragment. A full-length cDNA has been isolated, sequenced, expressed in COS-1 cells and used to map MuLT to mouse chromosome 17. The sequence and structure of the MuLT gene has been determined. MuLT cDNA has been used to analyse mRNA expression in several L3T4+ and Lyt-2+ (CD8+-equivalent) T cell clones activated with antigen, mitogen, or antibody to the T cell receptor. LT is expressed by both class I- and class II-restricted T cells. The mechanism of killing by both LT and the functionally related molecule TNF-alpha includes the induction of DNA fragmentation in the target cell.
Collapse
Affiliation(s)
- N H Ruddle
- Department of Epidemiology and Public Health, Yale University Medical School, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
2
|
Blackburn CC, Griffith J, Morahan G. A high-resolution map of the chromosomal region surrounding the nude gene. Genomics 1995; 26:308-17. [PMID: 7601457 DOI: 10.1016/0888-7543(95)80215-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor beta subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region.
Collapse
Affiliation(s)
- C C Blackburn
- Walter and Eliza Hall Institute for Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
3
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH. Comparative map for mice and humans. Mamm Genome 1992; 3:480-536. [PMID: 1392257 DOI: 10.1007/bf00778825] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- A M Buchberg
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5541
| | | | | |
Collapse
|
5
|
Buckwalter MS, Katz RW, Camper SA. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross. Genomics 1991; 10:515-26. [PMID: 1889803 DOI: 10.1016/0888-7543(91)90430-m] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.
Collapse
Affiliation(s)
- M S Buckwalter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109-0618
| | | | | |
Collapse
|
6
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky M, Roderick TH. Comparative map for mice and humans. Mamm Genome 1991; 1 Spec No:S461-515. [PMID: 1799811 DOI: 10.1007/bf00656504] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- A M Buchberg
- Jefferson Cancer Institute, Department of Microbiology and Immunology, Philadelphia, PA 19107-5541
| | | | | | | |
Collapse
|
8
|
Searle AG, Peters J, Lyon MF, Hall JG, Evans EP, Edwards JH, Buckle VJ. Chromosome maps of man and mouse. IV. Ann Hum Genet 1989; 53:89-140. [PMID: 2688541 DOI: 10.1111/j.1469-1809.1989.tb01777.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current knowledge of man-mouse genetic homology is presented in the form of chromosomal displays, tables and a grid, which show locations of the 322 loci now assigned to chromosomes in both species, as well as 12 DNA segments not yet associated with gene loci. At least 50 conserved autosomal segments with two or more loci have been identified, twelve of which are over 20 cM long in the mouse, as well as five conserved segments on the X chromosome. All human and mouse chromosomes now have conserved regions; human 17 still shows the least evidence of rearrangement, with a single long conserved segment which apparently spans the centromere. The loci include 102 which are known to be associated with human hereditary disease; these are listed separately. Human parental effects which may well be the result of genomic imprinting are reviewed and the location of the factors concerned displayed in relation to mouse chromosomal regions which have been implicated in imprinting phenomena.
Collapse
Affiliation(s)
- A G Searle
- MRC Radiobiology Unit, Chilton, Didcot, Oxon
| | | | | | | | | | | | | |
Collapse
|
9
|
Ahearn JM, Bartolomei MS, West ML, Cisek LJ, Corden JL. Cloning and sequence analysis of the mouse genomic locus encoding the largest subunit of RNA polymerase II. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61020-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Münke M, Francke U. The physical map of Mus musculus chromosome 11 reveals evolutionary relationships with different syntenic groups of genes in Homo sapiens. J Mol Evol 1987; 25:134-40. [PMID: 3116273 DOI: 10.1007/bf02101755] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physical localization of sequences homologous to three cloned genes was determined by in situ hybridization to metaphase chromosomes. Previous work had assigned the skeletal myosin heavy chain gene cluster (Myh), the functional locus for the cellular tumor antigen p53 (Trp53-1), and the cellular homologue of the viral erb-B oncogene (Erbb) to Mus musculus chromosome 11 (MMU11). Our results provide regional assignments of Myh and Trp53-1 to chromosome bands B2----C, and of Erbb to bands A1----A4. Taken together with in situ mapping of three other loci on MMU 11 (Hox-2 homeobox-containing gene cluster, the Sparc protein, and the Colla-1 collagen gene), which have been reported elsewhere, these data allowed us to construct a physical map of MMU11 and to compare it with the linkage map of this chromosome. The map positions of the homologous genes on human chromosomes suggest evolutionary relationships of distinct regions of MMU11 with six different human chromosome arms: 1p, 5q, 7p, 16p, 17p, and 17q. The delineation of conserved chromosome regions has important implications for the understanding of karyotype evolution in mammalian species and for the development of animal models of human genetic diseases.
Collapse
Affiliation(s)
- M Münke
- Department of Human Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
11
|
Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol Cell Biol 1987. [PMID: 3821724 DOI: 10.1128/mcb.7.2.586] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene.
Collapse
|
12
|
Bartolomei MS, Corden JL. Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol Cell Biol 1987; 7:586-94. [PMID: 3821724 PMCID: PMC365112 DOI: 10.1128/mcb.7.2.586-594.1987] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene.
Collapse
|
13
|
Comparative Genetic Analysis of Homeo-Box Genes in Mouse and Man. Hum Genet 1987. [DOI: 10.1007/978-3-642-71635-5_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|