1
|
Fernandes M, Salvador AF, Vicente AA. Biodegradation of PHB/PBAT films and isolation of novel PBAT biodegraders from soil microbiomes. CHEMOSPHERE 2024; 362:142696. [PMID: 38925517 DOI: 10.1016/j.chemosphere.2024.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are important candidates for replacing petroleum-based plastics. This transition is urgent for the development of a biobased economy and to protect human health and natural ecosystems. PHAs are biobased and biodegradable polyesters that when blended with other polymers, such as poly(butylene adipate-co-terephthalate) (PBAT), acquire remarkable improvements in their properties, which allow them to comply with the requirements of packaging applications. However, the biodegradation of such blends should be tested to evaluate the impact of those polymers in the environment. For instance, PBAT is a compostable aliphatic-aromatic copolyester, and its biodegradation in natural environments, such as soil, is poorly studied. In this work, we evaluated the biodegradation of a bilayer film composed of PHB and PBAT, by a soil microbiome. The bilayer film reached 47 ± 1 % mineralization in 180 days and PHB was no longer detected after this period. The increased crystallinity of the PBAT residue was a clear sign of biodegradation, indicating that the amorphous regions were preferentially biodegraded. Seven microorganisms were isolated, from which 4 were closely related to microorganisms already known as PHB degraders, but the other 3 species, closely related to Streptomyces coelicoflavus, Clonostachys rosea and Aspergillus insuetus, were found for the first time as PHB degraders. Most remarkably, two fungi closely related to Purpureocillium lilacinum and Aspergillus pseudodeflectus (99.83 % and 100 % identity by ITS sequencing) were isolated and identified as PBAT degraders. This is very interesting due to the rarity of isolating PBAT-degrading microorganisms. These results show that the bilayer film can be biodegraded in soil, at mesophilic temperatures, showing its potential to replace synthetic plastics in food packaging.
Collapse
Affiliation(s)
- Miguel Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Read T, Chan CM, Chaléat C, Laycock B, Pratt S, Lant P. The effect of additives on the biodegradation of polyhydroxyalkanoate (PHA) in marine field trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172771. [PMID: 38670377 DOI: 10.1016/j.scitotenv.2024.172771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The persistence of conventional fossil fuel-derived plastics in marine ecosystems has raised significant environmental concerns. Biodegradable plastics are being explored as an alternative. This study investigates the biodegradation behaviour in two marine environments of melt-extruded sheets of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastic as well as blends of PHBV with a non-toxic plasticiser (triethyl citrate, TEC) and composites of PHBV with wood flour. Samples were submerged for up to 35 weeks in two subtropical marine conditions: on the sandy seabed in the sublittoral benthic zone and the sandy seabed of an open air mesocosm with pumped seawater. Rates of biodegradation, lag times and times to 95 % mass loss (T95) were determined through mass loss data and Gompertz modelling. Mechanisms of biodegradation were studied through changes in molecular weight, mechanical properties and surface features. Results reveal a rapid biodegradation rate for all PHBV samples, demonstrating a range of specific biodegradation rates relative to exposed surface area of 0.03 ± 0.01 to 0.09 ± 0.04 mg.d-1.cm-2. This rapid rate of biodegradation meant that the subtle variations in biodegradation mechanisms across different sample thicknesses and additive compositions had little effect on overall lifetimes, with the T95 for most samples being around 250-350 days, regardless of site, highlighting the robust biodegradability of PHBV in seawater. It was only the PHBV-wood flour composite that showed faster biodegradation, and that was only in the exposed ocean site. The mesocosm site was otherwise shown to be a good model for the open ocean, with very comparable biodegradation rates and changes in mechanical properties over time.
Collapse
Affiliation(s)
- Tracey Read
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Clement Matthew Chan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Céline Chaléat
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul Lant
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
de Vogel FA, Goudriaan M, Zettler ER, Niemann H, Eich A, Weber M, Lott C, Amaral-Zettler LA. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172288. [PMID: 38599394 DOI: 10.1016/j.scitotenv.2024.172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.
Collapse
Affiliation(s)
- Fons A de Vogel
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Eckel F, Sinzinger K, Van Opdenbosch D, Schieder D, Sieber V, Zollfrank C. Influence of microbial biomass content on biodegradation and mechanical properties of poly(3-hydroxybutyrate) composites. Biodegradation 2024; 35:209-224. [PMID: 37402058 PMCID: PMC10881657 DOI: 10.1007/s10532-023-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone. In order to determine the causes for the faster biodegradation, the molecular weight, the crystallinity, the water uptake, the microbial biomass composition and scanning electron microscope images were assessed. The molecular weight of the PHB in the composites was lower than that of pure PHB while the crystallinity and microbial biomass composition were the same for all samples. A direct correlation of water uptake and crystallinity with biodegradation rate could not be observed. While the degradation of molecular weight of PHB during sample preparation contributed to the improvement of biodegradation, the main reason was attributed to biostimulation by the added biomass. The resulting enhancement of the biodegradation rate appears to be unique in the field of polymer biodegradation. The tensile strength was lowered, elongation at break remained constant and Young's modulus was increased compared to pure PHB.
Collapse
Affiliation(s)
- Felix Eckel
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Korbinian Sinzinger
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Daniel Van Opdenbosch
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Doris Schieder
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Volker Sieber
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany.
| |
Collapse
|
5
|
Ding K, Xu L, Chen Y, Li W, Chai X, Dai X, Wu B. Mechanistic insights into polyhydroxyalkanoate-enhanced denitrification capacity of microbial community: Evolution of community structure and intracellular electron transfer of nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159147. [PMID: 36183769 DOI: 10.1016/j.scitotenv.2022.159147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Denitrification is the key driving force of nitrogen cycle in surface water and plays an important role in eutrophication water remediation. Compared with some other common carbon sources, such as glucose and sodium acetate, polyhydroxyalkanoates (PHAs) were found to have the distinguished advantages in screening specific denitrifying bacteria of natural surface water bodies. In this study, the large ensembles of taxa were obtained from surface water samples and then sub-cultured with PHA or glucose as the sole carbon source. The microbial community that could be screened by PHA was identified, and the environmental functions of these bacteria were analyzed. At the genus level, the main communities regulated by PHA included Pseudomonas (56.30 %), Acinetobacter (27.75 %), Flavobacterium (10.19 %) and Comamonas (3.14 %), which all had good denitrification ability. The changes in carbon source, nitrogen source and biomass (expressed by DNA) were simultaneously monitored when culturing the model strain (P. stuzeri) with PHA or glucose. Compared with the glucose group, less PHA was consumed to remove the same amount of nitrate within a shorter incubation time, and there was no significant difference in bacterial growth with PHA or glucose as the carbon source (glucose:ΔN:ΔC:ΔDNA = 1:18:0.072; PHA:ΔN:ΔC:ΔDNA = 1:11:0.063). PHA improved the denitrification efficiency by increasing the expression of NarGHI, NirB, NirK and NorB, i.e., the key enzymes in the denitrification process. In addition, PHA accelerated the assimilating rate of extracellular nitrate by bacteria through increasing the expression of NarK. Finally, PHA-regulated electron transfer during denitrification was studied by observing the changes in NADH and NAD+. PHA could use a large proportion of NADH to offer electrons for denitrification, which increased the rate of denitrification. Improved mechanistic insights into the PHA-enhanced denitrification capacity of the microbial community can provide novel options for the in-situ remediation of eutrophic surface water.
Collapse
Affiliation(s)
- Ke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Linge Xu
- Hydrochina Huadong Engineering Corporation Limited, 201 Gaojiao Road, Hangzhou, 311122, China
| | - Yulin Chen
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, 901 Zhongshan North 2nd Road, Shanghai 200092, China
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01 T-Lab Building, 117411 Singapore, Singapore
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Lim BKH, Thian ES. Biodegradation of polymers in managing plastic waste - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151880. [PMID: 34826495 DOI: 10.1016/j.scitotenv.2021.151880] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The modern economy that is fast-moving and convenience centric has led to excessive consumption of plastic. This has unwittingly led to egregious accumulation of plastic waste polluting the environment. Unfortunately, present means of plastic waste management have all been proven as less than adequate; namely recycling, landfill and incineration. Recent focus on plastic waste management has seen the confluence of the developments in biodegradable polymers and microbial engineering strategy for more expedient decomposition of plastic waste at composting facilities. This review paper is an assimilation of current developments in the areas of biodegradable polymer as well as microbial strategy towards management of polymer waste. Advents in biodegradable polymers have been promising, especially with aliphatic polyesters and starch in blends or co-polymers of these. Microbial strategies have been pursued for the identification of microbial strains and understanding of their enzymatic degradation process on polymers. New insights in these two areas have been focused in improving the rate of degradation of plastic waste at composting facilities. Recent alignment of testing and certification standards is outlined to give intimate insights into the mechanisms and factors influencing biodegradation. Despite recent milestones, economic viability of composting plastic waste in mainstream waste facilities is still a distance away. As it remains that a polymer that is biodegradable is functionally inferior to conventional polymers. Rather, it requires a shift in consumer behaviour to accept less durable biodegradable plastic products, this will then lower the threshold for biodegradable polymers to become a commercial reality.
Collapse
Affiliation(s)
- Berlinda Kwee Hong Lim
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Viljakainen VR, Hug LA. The phylogenetic and global distribution of bacterial polyhydroxyalkanoate bioplastic-degrading genes. Environ Microbiol 2021; 23:1717-1731. [PMID: 33496062 DOI: 10.1111/1462-2920.15409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of microbially made polyesters commercialized as biodegradable plastics. PHA production rates are predicted to increase as concerns around environmental plastic contamination and limited fossil fuel resources have increased the importance of biodegradable and bio-based plastic alternatives. Microbially produced PHA depolymerases are the key enzymes mediating PHA biodegradation, but only a few PHA depolymerases have been well-characterized and screens employing metagenomic sequence data are lacking. Here, we used 3078 metagenomes to analyse the distribution of PHA depolymerases in microbial communities from diverse aquatic, terrestrial and waste management systems. We significantly expand the recognized diversity of this protein family by screening 1914 Gb of sequence data and identifying 13 869 putative PHA depolymerases in 1295 metagenomes. Our results indicate that PHA depolymerases are unevenly distributed across environments. We predicted the highest frequency of PHA depolymerases in wastewater systems and the lowest in marine and thermal springs. In tandem, we screened 5290 metagenome-assembled genomes to describe the phylogenetic distribution of PHA depolymerases, which is substantially broader compared with current cultured representatives. The Proteobacteria and Bacteroidota are key lineages encoding PHA depolymerases, but PHA depolymerases were predicted from members of the Bdellovibrionota, Methylomirabilota, Actinobacteriota, Firmicutes, Spirochaetota, Desulfobacterota, Myxococcota and Planctomycetota.
Collapse
Affiliation(s)
- V R Viljakainen
- University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - L A Hug
- University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
8
|
Bacterial Community Structure Dynamics in Meloidogyne incognita-Infected Roots and Its Role in Worm-Microbiome Interactions. mSphere 2020; 5:5/4/e00306-20. [PMID: 32669465 PMCID: PMC7364209 DOI: 10.1128/msphere.00306-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant parasitic nematodes such as Meloidogyne incognita have a complex life cycle, occurring sequentially in various niches of the root and rhizosphere. They are known to form a range of interactions with bacteria and other microorganisms that can affect their densities and virulence. High-throughput sequencing can reveal these interactions in high temporal and geographic resolutions, although thus far we have only scratched the surface. In this study, we have carried out a longitudinal sampling scheme, repeatedly collecting rhizosphere soil, roots, galls, and second-stage juveniles from 20 plants to provide a high-resolution view of bacterial succession in these niches, using 16S rRNA metabarcoding. Our findings indicate that a structured community develops in the root, in which gall communities diverge from root segments lacking a gall, and that this structure is maintained throughout the crop season. We describe the successional process leading toward this structure, which is driven by interactions with the nematode and later by an increase in bacteria often found in hypoxic and anaerobic environments. We present evidence that this structure may play a role in the nematode's chemotaxis toward uninfected root segments. Finally, we describe the J2 epibiotic microenvironment as ecologically deterministic, in part, due to the active bacterial attraction of second-stage juveniles.IMPORTANCE The study of high-resolution successional processes within tightly linked microniches is rare. Using the power and relatively low cost of metabarcoding, we describe the bacterial succession and community structure in roots infected with root-knot nematodes and in the nematodes themselves. We reveal separate successional processes in galls and adjacent non-gall root sections, which are driven by the nematode's life cycle and the progression of the crop season. With their relatively low genetic diversity, large geographic range, spatially complex life cycle, and the simplified agricultural ecosystems they occupy, root-knot nematodes can serve as a model organism for terrestrial holobiont ecology. This perspective can improve our understanding of the temporal and spatial aspects of biological control efficacy.
Collapse
|
9
|
Spatial and Seasonal Variations in the Abundance of Nitrogen-Transforming Genes and the Microbial Community Structure in Freshwater Lakes with Different Trophic Statuses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132298. [PMID: 31261730 PMCID: PMC6651097 DOI: 10.3390/ijerph16132298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Identifying nitrogen-transforming genes and the microbial community in the lacustrine sedimentary environment is critical for revealing nitrogen cycle processes in eutrophic lakes. In this study, we examined the diversity and abundance of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), denitrifying bacteria (DNB), and anammox bacteria (AAOB) in different trophic status regions of Lake Taihu using the amoA, Arch-amoA, nirS, and hzo genes as functional markers. Quantitative Polymerase Chain Reaction (qPCR) results indicated that the abundance of the nirS gene was the highest, while the amoA gene had the lowest abundance in all regions. Except for the primary inflow area of Lake Taihu, Arch-amoA gene abundance was higher than the hzo gene in three lake bays, and the abundance of the nirS gene increased with decreasing trophic status. The opposite pattern was observed for the amoA, Arch-amoA, and hzo genes. Phylogenetic analyses showed that the predominant AOB and AOA were Nitrosomonas and Nitrosopumilus maritimus, respectively, and the proportion of Nitrosomonas in the eutrophic region (87.9%) was higher than that in the mesotrophic region (71.1%). Brocadia and Anammoxoglobus were the two predominant AAOB in Lake Taihu. Five novel unknown phylotypes of AAOB were observed, and Cluster AAOB-B was only observed in the inflow area with a proportion of 32%. In the DNB community, Flavobacterium occurred at a higher proportion (22.6–38.2%) in all regions, the proportion of Arthrobacter in the mesotrophic region (3.6%) was significantly lower than that in the eutrophic region (15.6%), and the proportions of Cluster DNB-E in the inflow area (24.5%) was significantly higher than that in the lake bay (7.3%). The canonical correspondence analysis demonstrated that the substrate concentration in sedimentary environments, such as NOx--N in the sediment, NH4+-N in the pore water, and the total organic matter, were the key factors that determined the nitrogen-transforming microbial community. However, the temperature was also a predominant factor affecting the AOA and AAOB communities.
Collapse
|
10
|
Suzuki M, Tachibana Y, Kazahaya JI, Takizawa R, Muroi F, Kasuya KI. Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate). JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1383-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Eksiler K, Andou Y, Nakayama N, Yoshinaga K, Shirai Y. Design of biodegradable PCL/PI films as a joining tape for grafting plant. ENVIRONMENTAL TECHNOLOGY 2017; 38:2362-2372. [PMID: 27838958 DOI: 10.1080/09593330.2016.1261186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, novel eco-friendly blends based on environmental-friendly polymers and compatibilizers, such as poly(ϵ-caprolactone) (PCL), cis-1,4-polyisoprene (PI), soybean lecithin (SOLE) and acrylated-epoxidized soybean oil (AESO), have been prepared in order to suggest a biodegradable joining tool used for plant grafting in agriculture, which will be competitive from the environment and economic points of view against conventional nonbiodegradable tools. PCL/PI blends, in which the portion of PCL was 75 and 50, were mixed with a compatibilizer by a melt-blending technique. The resulting blends were investigated by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy and also their mechanical properties were determined. Afterwards, the blend films were buried in the soil. Remarkable level of weight loss was achieved in 6 weeks, ∼46%. The results showed that the addition of SOLE helped to improve the compatibility between PCL and PI due to its amphipathic property, and, besides, accelerated the weight loss of the films in soil, increasing microorganism growth on the film.
Collapse
Affiliation(s)
- Kubra Eksiler
- a Department of Biological Functions and Engineering , Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology , Kitakyushu , Fukuoka , Japan
| | - Yoshito Andou
- a Department of Biological Functions and Engineering , Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology , Kitakyushu , Fukuoka , Japan
- b Eco-Town Collaborative R&D Center for the Environment and Recycling, Kyushu Institute of Technology , Kitakyushu , Fukuoka , Japan
| | - Natsuki Nakayama
- c NARO Bio-oriented Technology Research Advancement Institution , Saitama , Japan
| | - Keita Yoshinaga
- c NARO Bio-oriented Technology Research Advancement Institution , Saitama , Japan
| | - Yoshihito Shirai
- a Department of Biological Functions and Engineering , Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology , Kitakyushu , Fukuoka , Japan
| |
Collapse
|
12
|
Parlane NA, Gupta SK, Rubio-Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BHA. Self-Assembled Protein-Coated Polyhydroxyalkanoate Beads: Properties and Biomedical Applications. ACS Biomater Sci Eng 2016; 3:3043-3057. [PMID: 33445349 DOI: 10.1021/acsbiomaterials.6b00355] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biological polyesters that can be naturally produced by a range of bacteria as water-insoluble inclusions composed of a PHA core coated with PHA synthesis, structural, and regulatory proteins. These naturally self-assembling shell-core particles have been recently conceived as biomaterials that can be bioengineered as biologically active beads for medical applications. Protein engineering of PHA-associated proteins enabled the production of PHA-protein assemblies exhibiting biologically active protein-based functions relevant for applications as vaccines or diagnostics. Here we provide an overview of the recent advances in bioengineering of PHA particles toward the display of biomedically relevant protein functions such as selected disease-specific antigens as diagnostic tools or for the design of particulate subunit vaccines against infectious diseases such as tuberculosis, meningitis, pneumonia, and hepatitis C.
Collapse
Affiliation(s)
- Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Sandeep K Gupta
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Patricia Rubio-Reyes
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Shuxiong Chen
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Majela Gonzalez-Miro
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington 6140, New Zealand
| |
Collapse
|
13
|
RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0988-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya KI. Identification of a poly(3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Boycheva S, Pichler F, Heijstra B, Lau K, Turner S. The genetic toolbox for Acidovorax temperans. J Microbiol Methods 2015; 115:129-38. [DOI: 10.1016/j.mimet.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
|
16
|
Cao Y, Tian B, Ji X, Shang S, Lu C, Zhang K. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. J Basic Microbiol 2015; 55:950-60. [PMID: 25809195 DOI: 10.1002/jobm.201400816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
The root knot nematode (RKN), Meloidogyne incognita, belongs to the most damaging plant pathogens worldwide, and is able to infect almost all cultivated plants, like tomato. Recent research supports the hypothesis that bacteria often associated with plant-parasitic nematodes, function as nematode parasites, symbionts, or commensal organisms etc. In this study, we explored the bacterial consortia associated with M. incognita at different developmental stages, including egg mass, adult female and second-stage juvenile using the pyrosequencing approach. The results showed that Proteobacteria, with a proportion of 71-84%, is the most abundant phylum associated with M. incognita in infected tomato roots, followed by Actinobacteria, Bacteroidetes, Firmicutes etc. Egg mass, female and second-stage juvenile of M. incognita harbored a core microbiome with minor difference in communities and diversities. Several bacteria genera identified in M. incognita are recognized cellulosic microorganisms, pathogenic bacteria, nitrogen-fixing bacteria and antagonists to M. incognita. Some genera previously identified in other plant-parasitic nematodes were also found in tomato RKNs. The potential biological control microorganisms, including the known bacterial pathogens and nematode antagonists, such as Actinomycetes and Pseudomonas, showed the largest diversity and proportion in egg mass, and dramatically decreased in second-stage juvenile and female of M. incognita. This is the first comprehensive report of bacterial flora associated with the RKN identified by pyrosequencing-based analysis. The results provide valuable information for understanding nematode-microbiota interactions and may be helpful in the development of novel nematode-control strategies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Baoyu Tian
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xinglai Ji
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Shenghua Shang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Chaojun Lu
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Keqin Zhang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
17
|
MacIvor JS, Moore AE. Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere 2013. [DOI: 10.1890/es13-00308.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Ghosh SK, Pal S, Ray S. Study of microbes having potentiality for biodegradation of plastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4339-55. [PMID: 23613206 DOI: 10.1007/s11356-013-1706-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/01/2013] [Indexed: 05/02/2023]
Abstract
Plastic is a broad name given to the different types of organic polymers having high molecular weight and is commonly derived from different petrochemicals. Plastics are generally not biodegradable or few are degradable but in a very slow rate. Day by day, the global demand of these polymers is sharply increasing; however, considering their abundance and potentiality in causing different environmental hazards, there is a great concern in the possible methods of degradation of plastics. Recently, there have been some debates at the world stage about the potential degradation procedures of these synthetic polymers and microbial degradation has emerged as one of the potential alternative ways of degradation of plastics. Alternatively, some scientists have also reported many adverse effects of these polymers in human health, and thus, there is an immediate need of a potential screening of some potential microbes to degrade these synthetic polymers. In this review, we have taken an attempt to accumulate all information regarding the chemical nature along with some potential microbes and their enzymatic nature of biodegradation of plastics along with some key factors that affect their biodegradability.
Collapse
Affiliation(s)
- Swapan Kumar Ghosh
- Mycopathology Laboratory, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata 700118 West Bengal, India.
| | | | | |
Collapse
|
19
|
Kumru M, Eren H, Catal T, Bermek H, Akarsubaşi AT. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. ENVIRONMENTAL TECHNOLOGY 2012; 33:2167-2175. [PMID: 23240212 DOI: 10.1080/09593330.2012.660655] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation.
Collapse
Affiliation(s)
- Mert Kumru
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
20
|
Li D, Rothballer M, Engel M, Hoser J, Schmidt T, Kuttler C, Schmid M, Schloter M, Hartmann A. Phenotypic variation in Acidovorax radicisN35 influences plant growth promotion. FEMS Microbiol Ecol 2011; 79:751-62. [PMID: 22107346 DOI: 10.1111/j.1574-6941.2011.01259.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/27/2022] Open
Abstract
Acidovorax radicis N35, isolated from surface-sterilized wheat roots (Triticum aestivum), showed irreversible phenotypic variation in nutrient broth, resulting in a differing colony morphology. In addition to the wild-type form (rough colony type), a phenotypic variant form (smooth colony type) appeared at a frequency of 3.2 × 10(-3) per cell per generation on NB agar plates. In contrast to the N35 wild type, the variant N35v showed almost no cell aggregation and had lost its flagella and swarming ability. After inoculation, only the wild-type N35 significantly promoted the growth of soil-grown barley plants. After co-inoculation of axenically grown barley seedlings with differentially fluorescently labeled N35 and N35v cells, decreased competitive endophytic root colonization in the phenotypic variant N35v was observed using confocal laser scanning microscopy. In addition, 454 pyrosequencing of both phenotypes revealed almost identical genomic sequences. The only stable difference noted in the sequence of the phenotype variant N35v was a 16-nucleotide deletion identified in a gene encoding the mismatch repair protein MutL. The deletion resulted in a frameshift that revealed a new stop codon resulting in a truncated MutL protein missing a functional MutL C-terminal domain. The mutation was consistent in all investigated phenotype variant cultures and might be responsible for the observed phenotypic variation in A. radicis N35.
Collapse
Affiliation(s)
- Dan Li
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Shi WJ, Xu ZY, Huang J, Fan CZ. Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process. MICROBIAL ECOLOGY 2011; 62:599-608. [PMID: 21611687 DOI: 10.1007/s00248-011-9882-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.
Collapse
Affiliation(s)
- Yong Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Volova TG, Boyandin AN, Vasil’ev AD, Karpov VA, Kozhevnikov IV, Prudnikova SV, Rudnev VP, Xuån BB, Dũng VV, Gitel’zon II. Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711020184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.08.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Shrivastav A, Mishra SK, Pancha I, Jain D, Bhattacharya S, Patel S, Mishra S. Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0605-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L. Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G. Biodegradation trend of poly(ε-caprolactone) and nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Woolnough CA, Yee LH, Charlton T, Foster LJR. Environmental degradation and biofouling of ‘green’ plastics including short and medium chain length polyhydroxyalkanoates. POLYM INT 2009. [DOI: 10.1002/pi.2746] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Anaerobic biodegradation tests of poly(lactic acid) and polycaprolactone using new evaluation system for methane fermentation in anaerobic sludge. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2009.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Biodegradability of plastics. Int J Mol Sci 2009; 10:3722-3742. [PMID: 19865515 PMCID: PMC2769161 DOI: 10.3390/ijms10093722] [Citation(s) in RCA: 621] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022] Open
Abstract
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.
Collapse
|
30
|
Nakasaki K, Matsuura H, Tanaka H, Sakai T. Synergy of two thermophiles enables decomposition of poly-epsilon-caprolactone under composting conditions. FEMS Microbiol Ecol 2007; 58:373-83. [PMID: 17117982 DOI: 10.1111/j.1574-6941.2006.00189.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ultimate degradation (i.e. complete mineralization) of biodegradable polymers proceeds through hydrolysis to the production of degradation intermediates (primary degradation) that are then taken into the microbial cell and further degraded to CO2 and water. We first isolated thermophilic actinomycete (Streptomyces thermonitrificans PDS-1), which has the activity of ultimate degradability, from compost in which poly-epsilon-caprolactone (PCL) degraded vigorously. We next tried to investigate the detailed mechanisms of degradation of the PCL in compost by developing a new experimental method in which isolated microorganisms are used to inoculate sterilized compost raw materials containing PCL. It was confirmed that the ultimate degradation of PCL could not be achieved by the action of the strain PDS-1 alone, and that a supplementary microorganism (Bacillus licheniformis HA1) isolated from compost utilizes the degradation intermediates and also increases the activity of the other primary microorganism (PDS-1) by adjusting the pH. We could thus show experimental proof of synergy between two thermophiles in the ultimate degradation of a biodegradable polymer in compost.
Collapse
Affiliation(s)
- Kiyohiko Nakasaki
- Department of Materials Science and Chemical Engineering, Shizuoka University, Hamamatsu, Japan.
| | | | | | | |
Collapse
|
31
|
Jung JH, Ree M, Kim H. Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal Today 2006. [DOI: 10.1016/j.cattod.2006.02.060] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Kim DY, Rhee YH. Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 2003; 61:300-8. [PMID: 12743758 DOI: 10.1007/s00253-002-1205-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/22/2002] [Accepted: 11/22/2002] [Indexed: 11/26/2022]
Abstract
A variety of biodegradable polyesters have been developed in order to obtain useful biomaterials and to reduce the impact of environmental pollution caused by the large-scale accumulation of non-degradable waste plastics. Polyhydroxyalkanoates, poly(epsilon-caprolactone), poly( l-lactide), and both aliphatic and aromatic polyalkylene dicarboxylic acids are examples of biodegradable polyesters. In general, most aliphatic polyesters are readily mineralized by a number of aerobic and anaerobic microorganisms that are widely distributed in nature. However, aromatic polyesters are more resistant to microbial attack than aliphatic polyesters. The fungal biomass in soils generally exceeds the bacterial biomass and thus it is likely that fungi may play a considerable role in degrading polyesters, just as they predominantly perform the decomposition of organic matter in the soil ecosystem. However, in contrast to bacterial polyester degradation, which has been extensively investigated, the microbiological and environmental aspects of fungal degradation of polyesters are unclear. This review reports recent advances in our knowledge of the fungal degradation of microbial and synthetic polyesters and discusses the ecological importance and contribution of fungi in the biological recycling of waste polymeric materials in the biosphere.
Collapse
Affiliation(s)
- D Y Kim
- Department of Microbiology, Chungnam National University, Daejeon, 305-764 Korea
| | | |
Collapse
|
33
|
Song C, Wang S, Ono S, Zhang B, Shimasaki C, Inoue M. The biodegradation of poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB/V) and PHB/V-degrading microorganisms in soil. POLYM ADVAN TECHNOL 2003. [DOI: 10.1002/pat.289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Wing Hong L, Yu J. Environmental factors and kinetics of microbial degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in an aqueous medium. J Appl Polym Sci 2002. [DOI: 10.1002/app.11354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Mabrouk MM, Sabry SA. Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res 2002; 156:323-35. [PMID: 11770850 DOI: 10.1078/0944-5013-00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1 % poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.
Collapse
Affiliation(s)
- M M Mabrouk
- Faculty of Education, Assiut University, New Valley Branch
| | | |
Collapse
|
36
|
Cloning and sequence analysis of poly(tetramethylene succinate) depolymerase from Acidovorax delafieldii strain BS-3. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80022-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Mergaert J, Boley A, Cnockaert MC, Müller WR, Swings J. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 2001; 24:303-10. [PMID: 11518336 DOI: 10.1078/0723-2020-00037] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A collection of 186 heterotrophic bacteria, isolated directly from a continuous-upflow fixed-bed reactor for the denitrification of drinking water, in which poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) granules acted as biofilm carrier, carbon source and electron donor, was studied with regard to taxonomic affiliation and degradation and denitrification characteristics. Two granule samples were taken from a fully operating reactor for enumeration and isolation of heterotrophic bacteria. One sample was drawn from the lower part of the reactor, near the oxic zone, and the other sample from the upper, anoxic part of the fixed bed. Dominant colonies were isolated and the cultures were identified using fatty acid analysis and 16S rDNA sequencing. Their ability to degrade the polymer and 3-hydroxybutyrate and to denitrify in pure culture was assessed. The results show that high numbers of heterotrophic bacteria were present in the biofilms on the polymer granules, with marked differences in taxonomic composition and potential functions between the lower and upper part of the fixed bed. The majority of the isolates were Gram negative bacteria, and most of them were able to reduce nitrate to nitrite or to denitrify, and to utilize 3-hydroxybutyrate as sole source of carbon. Only two groups, one identified as Acidovorax facilis and the other phylogenetically related to Brevundimonas intermedia, could combine denitrification and utilization of poly(3-hydroxybutyrate) (PHB), and were found only in the upper sample. The other groups occurred either in the lower or upper part, or in both samples. They were assigned to Brevundimonas, Pseudomonas, Agrobacterium, Achromobacter, or Phyllobacterium, or were phylogenetically related to Afipia or Stenotrophomonas.
Collapse
Affiliation(s)
- J Mergaert
- Laboratorium voor Microbiologie, Vakgroep Biochemie, Fysiologie en Microbiologie, Universiteit Gent, Belgium.
| | | | | | | | | |
Collapse
|
38
|
Jendrossek D. Microbial degradation of polyesters. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:293-325. [PMID: 11217416 DOI: 10.1007/3-540-40021-4_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Polyesters, such as microbially produced poly[(R)-3-hydroxybutyric acid] [poly(3HB)], other poly[(R)-hydroxyalkanoic acids] [poly(HA)] and related biosynthetic or chemosynthetic polyesters are a class of polymers that have potential applications as thermoplastic elastomers. In contrast to poly(ethylene) and similar polymers with saturated, non-functionalized carbon backbones, poly(HA) can be biodegraded to water, methane, and/or carbon dioxide. This review provides an overview of the microbiology, biochemistry and molecular biology of poly(HA) biodegradation. In particular, the properties of extracellular and intracellular poly(HA) hydrolyzing enzymes [poly(HA) depolymerases] are described.
Collapse
Affiliation(s)
- D Jendrossek
- Institut für Mikrobiologie der Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
39
|
Schloe K, Gillis M, Hoste B, Pot B, Vancanneyt M, Mergaert J, Swings J, Biedermann J, Süssmuth R. Polyphasic characterization of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (p(HB-co-HV)) metabolizing and denitrifying Acidovorax sp. strains. Syst Appl Microbiol 2000; 23:364-72. [PMID: 11108015 DOI: 10.1016/s0723-2020(00)80066-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For the purpose of denitrification in small drinking water plants, a bacterial mixed population was isolated from a packed bed column bioreactor with poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P(HB-co-HV)) as a substrate for the denitrification of ground water (10 degrees C). Isolates 2nIII from the mixed culture, with the ability to denitrify and metabolize P(HB-co-HV), were used as starter cultures for the elimination of nitrate in ground water. The strains were characterized by diverse techniques. Classical phenotypic studies lead to rRNA group III of the genus Pseudomonas. Results obtained by molecular techniques demonstrated that the 2nIII strains are members of the Comamonadaceae and shows similarities to the genus Acidovorax. However, an integration of the 2nIII isolates within one of the known Acidovorax species is not possible for the moment. The 2nIII starter cultures clustered close to Av. temperans according to their whole cell proteins and fatty acids, whereas in DNA/DNA hybridization no significant DNA binding (< 25%) was found. In contrast a significant but low degree of DNA/DNA hybridization was found between the 2nIII strains and Av. facilis and Av. delafieldii. Our polyphasic results lead to the conclusion that the 2nIII strains may constitute a separate Acicdovorax species.
Collapse
Affiliation(s)
- K Schloe
- Universiteit Gent, Laboratorium voor Microbiologie, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim HM, Ryu KE, Bae K, Rhee YH. Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J Biosci Bioeng 2000; 89:196-8. [PMID: 16232726 DOI: 10.1016/s1389-1723(00)88737-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Accepted: 10/20/1999] [Indexed: 11/27/2022]
Abstract
A novel bacterial strain capable of growing in a medium containing a medium-chain-length polyhydroxyalkanoate (MCL-PHA) as the sole carbon source was isolated from a soil sample. The isolate, which was identified as Pseudomonas sp. RY-1, secreted MCL-PHA depolymerase into the culture fluid only when it was cultivated in a medium containing a MCL-PHA, such as polyhydroxyoctanoate (PHO) or polyhydroxynonanoate (PHN). The extracellular MCL-PHA depolymerase of this organism was purified to electrophoretic homogeneity. The enzyme was a tetramer with identical subunits and a total molecular mass of 115 kDa. The isoelectric point of this enzyme was estimated to be 5.9 by isoelectric focusing. The maximal activity was observed at pH 8.5 and 35 degrees C. The enzyme was insensitive to phenylmethylsulfonyl fluoride and dithiothreitol, unlike other short-chain-length (SCL) PHA depolymerases. The K(m) values for PHO and PHN were 0.86 and 1.47 mg/ml, respectively. The enzyme could not hydrolyze SCL-PHAs and p-nitrophenyl esters of fatty acids.
Collapse
Affiliation(s)
- H M Kim
- Department of Microbiology, Chungnam National University, Taejeon 305-764, Korea
| | | | | | | |
Collapse
|
41
|
SCANDOLA* M, FINELLI L, SARTI B, MERGAERT J, SWINGS J, RUFFIEUX K, WINTERMANTEL E, BOELENS J, DE WILDE B, MÜLLER WR, SCHÄFER A, FINK AB, BADER HG. Biodegradation of a Starch Containing Thermoplastic in Standardized Test Systems. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 1998. [DOI: 10.1080/10601329808001999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|