Downs TR, Dage RC, French JF. Reduction in endotoxin-induced organ dysfunction and cytokine secretion by a cyclic nitrone antioxidant.
INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1995;
17:571-80. [PMID:
8586485 DOI:
10.1016/0192-0561(95)00042-z]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple organ dysfunction (MOD) is the leading cause of mortality in septic patients with circulatory shock. Recent evidence suggests that the overproduction of the cytokine, tumor necrosis factor-alpha(TNF), and oxygen free radical molecules may mediate the progression of sepsis to MOD and death. In this study, we have examined the ability of MDL 101,002, a free radical scavenger, to reduce organ dysfunction and cytokine secretion induced by lipopolysaccharide (LPS) administration in rats. Treatment with MDL 101,002(10-60 ng/kg, i.p.) 30 min prior to an LPS challenge resulted in a dose-dependent reduction in several markers indicative of organ dysfunction and mortality. MDL 101,002 markedly decreased LPS-induced liver and kidney damage as indicated by serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) or urea and creatinine, respectively. MDL 101,002 also prevented LPS-induced pulmonary edema, but did not prevent leukopenia and only partially reduced thrombocytopenia. Associated with these improvements in organ dysfunction and survival was a modest decrease in LPS-stimulated interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) secretion and a marked ( > 90%) inhibition of TNF secretion by MDL 101,002. The data are consistent with a role for oxygen free radicals in the development of endotoxin-induced organ dysfunction and shock and suggest that free radical scavengers could reduce the mortality consequent to sepsis by decreasing organ dysfunction, at least in part, through a reduction in free radical stimulated cytokine secretion.
Collapse