1
|
Sarangle Y, Bamel K, Purty RS. Role of acetylcholine and acetylcholinesterase in improving abiotic stress resistance/tolerance. Commun Integr Biol 2024; 17:2353200. [PMID: 38827581 PMCID: PMC11141473 DOI: 10.1080/19420889.2024.2353200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Abiotic stress that plants face may impact their growth and limit their productivity. In response to abiotic stress, several endogenous survival mechanisms get activated, including the synthesis of quaternary amines in plants. Acetylcholine (ACh), a well-known quaternary amine, and its components associated with cholinergic signaling are known to contribute to a variety of physiological functions. However, their role under abiotic stress is not well documented. Even after several studies, there is a lack of a comprehensive understanding of how cholinergic components mitigate abiotic stress in plants. Acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE) belongs to the GDSL lipase/acylhydrolase protein family and has been found in several plant species. Several studies have demonstrated that GDSL members are involved in growth, development, and abiotic stress. This review summarizes all the possible mitigating effects of the ACh-AChE system on abiotic stress tolerance and will try to highlight all the progress made so far in this field.
Collapse
Affiliation(s)
- Yashika Sarangle
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Kiran Bamel
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
2
|
Weist R, Flörkemeier T, Roger Y, Franke A, Schwanke K, Zweigerdt R, Martin U, Willbold E, Hoffmann A. Differential Expression of Cholinergic System Components in Human Induced Pluripotent Stem Cells, Bone Marrow-Derived Multipotent Stromal Cells, and Induced Pluripotent Stem Cell-Derived Multipotent Stromal Cells. Stem Cells Dev 2018; 27:166-183. [PMID: 29205106 DOI: 10.1089/scd.2017.0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The components of the cholinergic system are evolutionary very old and conserved molecules that are expressed in typical spatiotemporal patterns. They are involved in signaling in the nervous system, whereas their functions in nonneuronal tissues are hardly understood. Stem cells present an attractive cellular system to address functional issues. This study therefore compared human induced pluripotent stem cells (iPSCs; from cord blood endothelial cells), mesenchymal stromal cells derived from iPSCs (iPSC-MSCs), and bone marrow-derived MSCs (BM-MSCs) from up to 33 different human donors with respect to gene expressions of components of the cholinergic system. The status of cells was identified and characterized by the detection of cell surface antigens using flow cytometry. Acetylcholinesterase expression in iPSCs declined during their differentiation into MSCs and was comparably low in BM-MSCs. Butyrylcholinesterase was present in iPSCs, increased upon transition from the three-dimensional embryoid body phase into monolayer culture, and declined upon further differentiation into iPSC-MSCs. In BM-MSCs a notable butyrylcholinesterase expression could be detected in only four donors, but was elusive in other patient-derived samples. Different nicotinic acetylcholine receptor subunits were preferentially expressed in iPSCs and during early differentiation into iPSC-MSCs, low expression was detected in iPS-MSCs and in BM-MSCs. The m2 and m3 variants of muscarinic acetylcholine receptors were detected in all stem cell populations. In BM-MSCs, these gene expressions varied between donors. Together, these data reveal the differential expression of cholinergic signaling system components in stem cells from specific sources and suggest the utility of our approach to establish informative biomarkers.
Collapse
Affiliation(s)
- Ramona Weist
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,2 Department of Trauma Surgery, Hannover Medical School , Hannover, Germany
| | - Thilo Flörkemeier
- 3 Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School , Hannover, Germany
| | - Yvonne Roger
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| | - Annika Franke
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Kristin Schwanke
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Robert Zweigerdt
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Ulrich Martin
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Elmar Willbold
- 3 Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| | - Andrea Hoffmann
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
3
|
Muralidharan M, Buss K, Larrimore KE, Segerson NA, Kannan L, Mor TS. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. PLANT MOLECULAR BIOLOGY 2013; 81:565-76. [PMID: 23430565 PMCID: PMC3769184 DOI: 10.1007/s11103-013-0021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/01/2013] [Indexed: 05/09/2023]
Abstract
Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family.
Collapse
|
4
|
Falugi C, Aluigi MG. Early appearance and possible functions of non-neuromuscular cholinesterase activities. Front Mol Neurosci 2012; 5:54. [PMID: 22529777 PMCID: PMC3330712 DOI: 10.3389/fnmol.2012.00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
The biological function of the cholinesterase (ChE) enzymes has been studied since the beginning of the twentieth century. Acetylcholinesterase plays a key role in the modulation of neuromuscular impulse transmission in vertebrates, while in invertebrates pseudo cholinesterases are preeminently represented. During the last 40 years, awareness of the role of ChEs role in regulating non-neuromuscular cell-to-cell interactions has been increasing such as the ones occurring during gamete interaction and embryonic development. Moreover, ChE activities are responsible for other relevant biological events, including regulation of the balance between cell proliferation and cell death, as well as the modulation of cell adhesion and cell migration. Understanding the mechanisms of the regulation of these events can help us foresee the possible impact of neurotoxic substances on the environmental and human health.
Collapse
Affiliation(s)
- Carla Falugi
- Dipartimento per lo studio del Territorio e delle sue Risorse, Laboratory of Experimental Embryology, Università di Genova Genova, Italy
| | | |
Collapse
|
6
|
Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K. Evolutional study on acetylcholine expression. Life Sci 2003; 72:1745-56. [PMID: 12559395 DOI: 10.1016/s0024-3205(02)02478-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylcholine (ACh) is a well-known neurotransmitter in the cholinergic nervous systems of vertebrates and insects; however, there is only indirect evidence for its presence in lower invertebrates, such as plants and fungi. We therefore investigated the expression of ACh in invertebrates (sea squirt, sea urchin, trepang, squid, abalone, nereis, sea anemone, coral and sponge), plants (arabidopsis, eggplant, bamboo shoot, cedar, hinoki, pine, podcarp, fern, horsetail and moss), fungi (yeast and mushroom) and bacteria by assaying ACh content and synthesis, focusing on the presence of two synthetic enzymes, choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT). Using a specific radioimmunoassay, ACh was detected in all samples tested. The levels varied considerably, however, with the upper portion of bamboo shoots having the highest content (2.9 micromol/g). ACh synthesis was also detected in all samples tested; moreover, the activity in most samples from the animal kingdom, as well as bamboo shoots and the stem of the shiitake mushroom, were sensitive to both ChAT and CarAT inhibitors. Levels of ACh synthesis were lower in samples from other plants, fungi and bacteria and were insensitive to ChAT and CarAT inhibitors. These findings demonstrate the presence of ACh and ACh-synthesizing activity in evolutionally primitive life as well as in more complex multicellular organisms. In the context of the recent discovery of non-neuronal ACh in various mammalian species, these findings suggest that ACh been expressed in organisms from the beginning of life, functioning as a local mediator as well as a neurotransmitter.
Collapse
Affiliation(s)
- Yoko Horiuchi
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
8
|
Raineri M, Modenesi P. Membrane-bound Ca2+ distribution visualized by chlorotetracycline fluorescence during morphogenesis of soredia in a lichen. THE HISTOCHEMICAL JOURNAL 1988; 20:81-7. [PMID: 3391800 DOI: 10.1007/bf01746608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the lichen Parmelia caperata (L.) Ach. the distribution pattern of membrane-bound Ca2+ is investigated in the symbionts by chlorotetracycline (CTC)-induced fluorescence during the development of propagative structures, the soredia. The results demonstrate that Ca2+ accumulation in the alga and the fungus is associated with this morphogenetic process; particularly, polarized hyphal growth involves a tip-to-base Ca2+ gradient. CTC fluorescence distribution is coincident with that of cholinesterase (ChE) activity during morphogenesis of soredia. A comparison is suggested with 'embryonic ChE' of animal cells, where developmental events are regulated by a cholinergic mechanism that also modulates Ca2+ levels.
Collapse
Affiliation(s)
- M Raineri
- Institute of Comparative Anatomy, University of Genoa, Italy
| | | |
Collapse
|