1
|
Kotov AA, Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV. Drosophila as a Model System for Studying of the Evolution and Functional Specialization of the Y Chromosome. Int J Mol Sci 2022; 23:4184. [PMID: 35457001 PMCID: PMC9031259 DOI: 10.3390/ijms23084184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila V. Olenina
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», 123182 Moscow, Russia; (A.A.K.); (S.S.B.); (V.E.A.); (A.S.S.)
| |
Collapse
|
2
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
3
|
Zhu L, Fukunaga R. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila. PLoS Genet 2021; 17:e1009655. [PMID: 34181646 PMCID: PMC8248703 DOI: 10.1371/journal.pgen.1009655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/01/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
During spermatogenesis, the process in which sperm for fertilization are produced from germline cells, gene expression is spatiotemporally highly regulated. In Drosophila, successful expression of extremely large male fertility factor genes on Y-chromosome spanning some megabases due to their gigantic intron sizes is crucial for spermatogenesis. Expression of such extremely large genes must be challenging, but the molecular mechanism that allows it remains unknown. Here we report that a novel RNA-binding protein Maca, which contains two RNA-recognition motifs, is crucial for this process. maca null mutant male flies exhibited a failure in the spermatid individualization process during spermatogenesis, lacked mature sperm, and were completely sterile, while maca mutant female flies were fully fertile. Proteomics and transcriptome analyses revealed that both protein and mRNA abundance of the gigantic male fertility factor genes kl-2, kl-3, and kl-5 (kl genes) are significantly decreased, where the decreases of kl-2 are particularly dramatic, in maca mutant testes. Splicing of the kl-3 transcripts was also dysregulated in maca mutant testes. All these physiological and molecular phenotypes were rescued by a maca transgene in the maca mutant background. Furthermore, we found that in the control genetic background, Maca is exclusively expressed in spermatocytes in testes and enriched at Y-loop A/C in the nucleus, where the kl-5 primary transcripts are localized. Our data suggest that Maca increases transcription processivity, promotes successful splicing of gigantic introns, and/or protects transcripts from premature degradation, of the kl genes. Our study identified a novel RNA-binding protein Maca that is crucial for successful expression of the gigantic male fertility factor genes, spermatogenesis, and male fertility.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
6
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
7
|
Jagannathan M, Yamashita YM. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:319-327. [PMID: 29610245 DOI: 10.1101/sqb.2017.82.034504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Jagannathan M, Cummings R, Yamashita YM. A conserved function for pericentromeric satellite DNA. eLife 2018; 7:34122. [PMID: 29578410 PMCID: PMC5957525 DOI: 10.7554/elife.34122] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/24/2018] [Indexed: 12/27/2022] Open
Abstract
A universal and unquestioned characteristic of eukaryotic cells is that the genome is divided into multiple chromosomes and encapsulated in a single nucleus. However, the underlying mechanism to ensure such a configuration is unknown. Here, we provide evidence that pericentromeric satellite DNA, which is often regarded as junk, is a critical constituent of the chromosome, allowing the packaging of all chromosomes into a single nucleus. We show that the multi-AT-hook satellite DNA-binding proteins, Drosophila melanogaster D1 and mouse HMGA1, play an evolutionarily conserved role in bundling pericentromeric satellite DNA from heterologous chromosomes into ‘chromocenters’, a cytological association of pericentromeric heterochromatin. Defective chromocenter formation leads to micronuclei formation due to budding from the interphase nucleus, DNA damage and cell death. We propose that chromocenter and satellite DNA serve a fundamental role in encapsulating the full complement of the genome within a single nucleus, the universal characteristic of eukaryotic cells. On Earth, life is divided into three domains. The smallest of these domains includes all the creatures, from sunflowers to yeasts to humans, that have the genetic information within their cells encased in a structure known as the nucleus. The genomes of these organisms are formed of long pieces of DNA, called chromosomes, which are packaged tightly and then unpackaged every time the cell divides. When a cell is not dividing, the chromosomes in the nucleus are loosely bundled up together. It is well known that DNA is the blueprint for the building blocks of life, but actually most of the genetic information in a cell codes for nothing, and has unknown roles. An example of such ‘junk DNA’ is pericentrometric satellite DNA, small repetitive sequences found on all chromosomes. However, new experiments by Jagannathan et al. show that, in the nucleus of animal cells, certain DNA binding proteins make chromosomes huddle together by attaching to multiple pericentrometric satellite DNA sequences on different chromosomes. In fact, if these proteins are removed from mice and fruit flies cells grown in the laboratory, the chromosomes cannot be clustered together. Instead, they ‘float away’, and the membranes of the nucleus get damaged, possibly buckling under the pressure of the unorganized DNA. These events damage the genetic information, which can lead to the cell dying or forming tumors. ‘Junk DNA’ therefore appears to participate in fundamental cellular processes across species, a result that opens up several new lines of research.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Ryan Cummings
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
9
|
Chang CH, Larracuente AM. Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura. Evolution 2017; 71:1285-1296. [PMID: 28322435 PMCID: PMC5485016 DOI: 10.1111/evo.13229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 01/10/2023]
Abstract
Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome‐Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real‐time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y‐to‐dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ∼78 Kb and is not repeat‐dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y‐to‐dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y‐to‐dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y‐to‐dot translocation.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | | |
Collapse
|
10
|
Kubrak OI, Kučerová L, Theopold U, Nylin S, Nässel DR. Characterization of Reproductive Dormancy in Male Drosophila melanogaster. Front Physiol 2016; 7:572. [PMID: 27932997 PMCID: PMC5121231 DOI: 10.3389/fphys.2016.00572] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 11/13/2022] Open
Abstract
Insects are known to respond to seasonal and adverse environmental changes by entering dormancy, also known as diapause. In some insect species, including Drosophila melanogaster, dormancy occurs in the adult organism and postpones reproduction. This adult dormancy has been studied in female flies where it is characterized by arrested development of ovaries, altered nutrient stores, lowered metabolism, increased stress and immune resistance and drastically extended lifespan. Male dormancy, however, has not been investigated in D. melanogaster, and its physiology is poorly known in most insects. Here we show that unmated 3-6 h old male flies placed at low temperature (11°C) and short photoperiod (10 Light:14 Dark) enter a state of dormancy with arrested spermatogenesis and development of testes and male accessory glands. Over 3 weeks of diapause we see a dynamic increase in stored carbohydrates and an initial increase and then a decrease in lipids. We also note an up-regulated expression of genes involved in metabolism, stress responses and innate immunity. Interestingly, we found that male flies that entered reproductive dormancy do not attempt to mate females kept under non-diapause conditions (25°C, 12L:12D), and conversely non-diapausing males do not mate females in dormancy. In summary, our study shows that male D. melanogaster can enter reproductive dormancy. However, our data suggest that dormant male flies deplete stored nutrients faster than females, studied earlier, and that males take longer to recover reproductive capacity after reintroduction to non-diapause conditions.
Collapse
Affiliation(s)
- Olga I Kubrak
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Lucie Kučerová
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University Stockholm, Sweden
| |
Collapse
|
11
|
Satyaki PRV, Cuykendall TN, Wei KHC, Brideau NJ, Kwak H, Aruna S, Ferree PM, Ji S, Barbash DA. The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats. PLoS Genet 2014; 10:e1004240. [PMID: 24651406 PMCID: PMC3961192 DOI: 10.1371/journal.pgen.1004240] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. Sister species capable of mating often produce hybrids that are sterile or die during development. This reproductive isolation is caused by incompatibilities between the two sister species' genomes. Some hybrid incompatibilities involve genes that encode rapidly evolving proteins that localize to heterochromatin. Heterochromatin is largely made up of highly repetitive transposable elements and satellite DNAs. It has been hypothesized that rapid changes in heterochromatic DNA drives the changes in these HI genes and thus the evolution of reproductive isolation. In support of this model, we show that two rapidly evolving HI proteins, Lhr and Hmr, which reproductively isolate the fruit fly sister species D. melanogaster and D. simulans, repress transposable elements and satellite DNAs. These proteins also help regulate the length of the atypical Drosophila telomeres, which are themselves made of domesticated transposable elements. Our data suggest that these proteins are part of the adaptive machinery that allows the host to respond to changes and increases in heterochromatin and to maintain the activity of genes located within or adjacent to heterochromatin.
Collapse
Affiliation(s)
- P. R. V. Satyaki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Tawny N. Cuykendall
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Kevin H-C. Wei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nicholas J. Brideau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - S. Aruna
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Patrick M. Ferree
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shuqing Ji
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
13
|
Redhouse JL, Mozziconacci J, White RAH. Co-transcriptional architecture in a Y loop in Drosophila melanogaster. Chromosoma 2011; 120:399-407. [PMID: 21556802 DOI: 10.1007/s00412-011-0321-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/22/2011] [Accepted: 04/15/2011] [Indexed: 11/29/2022]
Abstract
The Y loops of Drosophila spermatocytes are formed by the expression of huge individual transcription units on the Y chromosome and their large size provides a unique system for the investigation of the organisation of transcription in intact nuclei. By labelling ribonucleo-protein (RNP) components, the loop chromatin and nascent transcripts in Y loop C, we reveal a highly structured organisation of RNP domains associated with nascent transcripts. We distinguish two types of RNP domain, a proximal domain that runs alongside the chromatin of loop C and a distal RNP domain that wraps around the proximal domain and the loop chromatin. The proximal domain is marked by the Pasilla protein, and separate distal subdomains are marked by the S5 antigen and Boule. We discuss the implications of this highly structured co-transcriptional architecture for the organisation of the process of transcription.
Collapse
Affiliation(s)
- Juliet L Redhouse
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | | | |
Collapse
|
14
|
|
15
|
O'Neill RJ, Carone DM. The role of ncRNA in centromeres: a lesson from marsupials. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:77-101. [PMID: 19521813 DOI: 10.1007/978-3-642-00182-6_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Though centromeres have been thought to be comprised of repetitive, transcriptionally inactive DNA, new evidence suggests that eukaryotic centromeres produce a variety of transcripts and that RNA is essential for centromere competence. It has been proposed that centromere satellite transcripts play an essential role in centromere function through demarcation of the kinetochore-binding domain. However, the regional limits and regulation of transcription within the mammalian centromere are unknown. Analysis of transcriptional domains within the centromere in mammalian models is impeded by the unbridgeable expanse of satellite monomers throughout the pericentromere. The comparatively small size of the wallaby centromere and the evolutionary role of the centromere in marsupial speciation events position the wallaby centromere as a tractable and valuable mammalian centromere model. We highlight the current understanding of the wallaby centromere and the role of transcription in centromere function.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Center for Applied Genetics and Technology, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
16
|
Piergentili R, Mencarelli C. Drosophila melanogaster kl-3 and kl-5 Y-loops harbor triple-stranded nucleic acids. J Cell Sci 2008; 121:1605-12. [PMID: 18430782 DOI: 10.1242/jcs.025320] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary spermatocyte nuclei of Drosophila melanogaster contain three prominent lampbrush-like loops. The development of these structures has been associated with the transcription of three fertility factors located on the Y chromosome, named kl-5, kl-3 and ks-1. These loci have huge physical dimensions and contain extremely long introns. In addition, kl-3 and kl-5 were shown to encode two putative dynein subunits required for the correct assembly of the sperm axoneme. Here, we show that both the kl-5 and kl-3 loops are intensely decorated by monoclonal antibodies recognizing triple-stranded nucleic acids, and that each loop presents a peculiar molecular organization of triplex structures. Moreover, immunostaining of Drosophila hydei primary spermatocytes revealed that also in this species - which diverged from D. melanogaster 58 million years ago - Y-loops are decorated by anti-triplex antibodies, strongly suggesting a conserved role of loop-associated triplexes. Finally, we showed that in D. melanogaster wild-type lines that are raised at the non-permissive temperature of 31+/-0.5 degrees C (which is known to induce male sterility in flies) both the triplex immunostaining and the axonemal dynein heavy chains encoded by kl-3 and kl-5 are no longer detectable, which suggests a functional correlation between loop-associated triplexes, the presence of axonemal proteins and male fertility in fly.
Collapse
Affiliation(s)
- Roberto Piergentili
- Department of Genetics and Molecular Biology - Sapienza Università di Roma, 00185 Rome, Italy.
| | | |
Collapse
|
17
|
Ceprani F, Raffa GD, Petrucci R, Piergentili R. Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster. BMC Genet 2008; 9:32. [PMID: 18405358 PMCID: PMC2386818 DOI: 10.1186/1471-2156-9-32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 04/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5) have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. Results Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. Conclusion Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.
Collapse
Affiliation(s)
- Francesca Ceprani
- Dipartimento di Genetica e Biologia Molecolare, Sapienza - Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
18
|
Pezer Z, Ugarković D. RNA Pol II promotes transcription of centromeric satellite DNA in beetles. PLoS One 2008; 3:e1594. [PMID: 18270581 PMCID: PMC2220036 DOI: 10.1371/journal.pone.0001594] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/17/2008] [Indexed: 12/04/2022] Open
Abstract
Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera). This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80%) are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A) tails in a portion of the transcripts indicate RNA polymerase II–dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.
Collapse
Affiliation(s)
- Zeljka Pezer
- Department of Molecular Biology, Ruder Bosković Institute, Zagreb, Croatia
| | | |
Collapse
|
19
|
Metcalf CE, Wassarman DA. Nucleolar colocalization of TAF1 and testis-specific TAFs duringDrosophilaspermatogenesis. Dev Dyn 2007; 236:2836-43. [PMID: 17823958 DOI: 10.1002/dvdy.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Drosophila, testis-specific TBP-associated factors (tTAFs) predominantly localize to spermatocyte nucleoli and regulate the transcription of genes necessary for spermatocyte entry into meiosis. tTAFs are paralogs of generally expressed TAF subunits of transcription factor IID (TFIID). Our recent observation that the generally expressed TAF1 isoform TAF1-2 is greatly enriched in testes prompted us to explore the functional relationship between general TAFs and tTAFs during spermatogenesis. Analysis by immunofluorescence microscopy revealed that among the general TFIID subunits examined (TATA-box binding protein [TBP], TAF1, TAF4, TAF5, and TAF9), only TAF1 colocalized with the tTAF Mia in spermatocyte nucleoli. Nucleolar localization of TAF1, but not Mia, was disrupted in tTAF mutant flies, and TAF1 dissociated from DNA prior to Mia as spermatocytes entered meiosis. Taken together, our results suggest stepwise assembly of a testis-specific TFIID complex (tTFIID) whereby a TAF1 isoform, presumably TAF1-2, is recruited to a core subassembly of tTAFs in spermatocyte nucleoli.
Collapse
Affiliation(s)
- Chad E Metcalf
- University of Wisconsin School of Medicine and Public Health, Department of Biomolecular Chemistry, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
20
|
Piergentili R. Evolutionary conservation of lampbrush-like loops in drosophilids. BMC Cell Biol 2007; 8:35. [PMID: 17697358 PMCID: PMC1978495 DOI: 10.1186/1471-2121-8-35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 08/14/2007] [Indexed: 12/02/2022] Open
Abstract
Background Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 specifically recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phase-contrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree. Results In the male germ line of all species tested there are cells showing giant nuclei and intranuclear structures similar to those of Drosophila melanogaster primary spermatocytes. Moreover, the antibody T53-F1 recognizes intranuclear structures in primary spermatocytes of all drosophilids analyzed. Interestingly, the extent and conformation of the staining pattern is species-specific. In addition, the intense staining of sperm tails in all species suggests that the terminal localization of Loopin-1 and its orthologues is conserved. A comparison of these cytological data and the data coming from the literature about sperm length, amount of sperm tail entering the egg during fertilization, shape and extent of both loops and primary spermatocyte nuclei, seems to exclude direct relationships among these parameters. Conclusion Taken together, the data reported strongly suggest that lampbrush-like loops are a conserved feature of primary spermatocyte nuclei in many, if not all, drosophilids. Moreover, the conserved pattern of the T53-F1 immunostaining indicates that a Loopin-1-like protein is present in all the species analyzed, whose localization on lampbrush-like loops and sperm tails during spermatogenesis is evolutionary conserved.
Collapse
Affiliation(s)
- Roberto Piergentili
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
21
|
Ugarkovic D. Functional elements residing within satellite DNAs. EMBO Rep 2006; 6:1035-9. [PMID: 16264428 PMCID: PMC1371040 DOI: 10.1038/sj.embor.7400558] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/20/2005] [Indexed: 12/28/2022] Open
Abstract
Satellite DNAs represent a fast-evolving portion of the eukaryotic genome whose evolution is proposed to be driven by the stochastic process of molecular drive. Recent results indicate that satellite DNAs are subject to certain structural constraints, which are probably related to their interaction with proteins involved in the establishment of specific chromatin structures. The evolutionary persistence and high sequence conservation of some satellites, as well as the presence of stage- or tissue-specific, differentially expressed transcripts in several species, are consistent with the hypothesis that satellite DNA could have a regulatory role in eukaryotic organisms. Although the role of most transcripts is not known, some act as precursors of small interfering RNAs, which are now recognized as having an important role in chromatin modulation and the control of gene expression. Furthermore, some transcripts are involved in the cellular response to stress.
Collapse
Affiliation(s)
- Durdica Ugarkovic
- Department of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, PO Box 180, HR-10002 Zagreb, Croatia.
| |
Collapse
|
22
|
Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G. Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 2005; 16:2597-604. [PMID: 15788562 PMCID: PMC1142408 DOI: 10.1091/mbc.e04-12-1078] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Thermal and chemical stresses induce the formation in human cells of novel and transient nuclear structures called nuclear stress bodies (nSBs). These contain heat shock factor 1 (HSF-1) and a specific subset of pre-mRNA processing factors. Nuclear stress bodies are assembled on specific pericentromeric heterochromatic domains containing satellite III (SatIII) DNA. In response to stress, these domains change their epigenetic status from heterochromatin to euchromatin and are transcribed in poly-adenylated RNAs that remain associated with nSBs. In this article, we describe the cloning, sequencing, and functional characterization of these transcripts. They are composed of SatIII repeats and originate from the transcription of multiple sites within the SatIII arrays. Interestingly, the level of SatIII RNAs can be down-regulated both by antisense oligonucleotides and small interfering RNAs (siRNA). Knockdown of SatIII RNA by siRNAs requires the activity of Argonaute 2, a component of the RNA-induced silencing complex. Down-regulation of satellite III RNAs significantly affects the recruitment of RNA processing factors to nSBs without altering the association of HSF-1 with these structures nor the presence of acetylated histones within nSBs. Thus, satellite III RNAs have a major role in the formation of nSBs.
Collapse
MESH Headings
- Animals
- Argonaute Proteins
- Cell Fusion
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus Structures/metabolism
- Coculture Techniques
- DNA, Satellite/chemistry
- DNA, Satellite/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Down-Regulation
- Euchromatin/genetics
- Euchromatin/metabolism
- Eukaryotic Initiation Factor-2
- HeLa Cells
- Heat Shock Transcription Factors
- Heat-Shock Response
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Humans
- Mice
- NIH 3T3 Cells
- Oligonucleotides, Antisense/pharmacology
- Peptide Initiation Factors/metabolism
- RNA, Small Interfering/pharmacology
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA-Induced Silencing Complex
- Sequence Analysis, RNA
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Transcription Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Rut Valgardsdottir
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Drosophila's importance as a model organism made it an obvious choice to be among the first genomes sequenced, and the Release 1 sequence of the euchromatic portion of the genome was published in March 2000. This accomplishment demonstrated that a whole genome shotgun (WGS) strategy could produce a reliable metazoan genome sequence. Despite the attention to sequencing methods, the nucleotide sequence is just the starting point for genome-wide analyses; at a minimum, the genome sequence must be interpreted using expressed sequence tag (EST) and complementary DNA (cDNA) evidence and computational tools to identify genes and predict the structures of their RNA and protein products. The functions of these products and the manner in which their expression and activities are controlled must then be assessed-a much more challenging task with no clear endpoint that requires a wide variety of experimental and computational methods. We first review the current state of the Drosophila melanogaster genome sequence and its structural annotation and then briefly summarize some promising approaches that are being taken to achieve an initial functional annotation.
Collapse
Affiliation(s)
- Susan E Celniker
- Berkeley Drosophila Genome Project, Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | |
Collapse
|
24
|
Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, Yasuhara JC, Wakimoto BT, Myers EW, Celniker SE, Rubin GM, Karpen GH. Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 2002; 3:RESEARCH0085. [PMID: 12537574 PMCID: PMC151187 DOI: 10.1186/gb-2002-3-12-research0085] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 11/28/2002] [Accepted: 12/05/2002] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly. RESULTS WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm. CONCLUSIONS Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.
Collapse
Affiliation(s)
- Roger A Hoskins
- Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miller WJ, Nagel A, Bachmann J, Bachmann L. Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol Biol Evol 2000; 17:1597-609. [PMID: 11070048 DOI: 10.1093/oxfordjournals.molbev.a026259] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SGM (Drosophila subobscura, Drosophila guanche, and Drosophila madeirensis) transposons are a family of transposable elements (TEs) in Drosophila with some functional and structural similarities to miniature inverted-repeat transposable elements (MITEs). These elements were recently active in D. subobscura and D. madeirensis (1-2 MYA), but in D. guanche (3-4 MYA), they gave rise to a species-specifically amplified satellite DNA making up approximately 10% of its genome. SGM elements were already active in the common ancestor of all three species, giving rise to the A-type specific promoter section of the P:-related neogene cluster. SGM sequences are similar to elements found in other obscura group species, such as the ISY elements in D. miranda and the ISamb elements in Drosophila ambigua. SGM elements are composed of different sequence modules, and some of them, i.e., LS and LS-core, are found throughout the Drosophila and Sophophora radiation with similarity to more distantly related TEs. The LS-core module is highly enriched in the noncoding sections of the Drosophila melanogaster genome, suggesting potential regulatory host gene functions. The SGM elements can be considered as a model system elucidating the evolutionary dynamics of mobile elements in their arms race with host-directed silencing mechanisms and their evolutionary impact on the structure and composition of their respective host genomes.
Collapse
Affiliation(s)
- W J Miller
- Institute of Medical Biology, General Genetics, University of Vienna, Austria.
| | | | | | | |
Collapse
|
26
|
Lu AQ, Beckingham K. Androcam, a Drosophila calmodulin-related protein, is expressed specifically in the testis and decorates loop kl-3 of the Y chromosome. Mech Dev 2000; 94:171-81. [PMID: 10842068 DOI: 10.1016/s0925-4773(00)00262-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Drosophila genome encodes a protein that is 68% identical to Drosophila calmodulin (Cam). We show here that this Cam-related gene is specifically expressed in the germ-line of the testis, leading to the name Androcam (Acam). Early in spermatogenesis Acam accumulates on one of the chromatin loops of the Y chromosome, kl-3. This association with kl-3 may indicate an RNA processing-related role for Acam and/or could reflect an unusual storage/assembly function hypothesized for the Y loops. After meiosis Acam is detectable in developing sperm tail cytoplasm, where at least some of the protein is not tightly associated with tubulin. Late in spermiogenesis, some Acam staining overlaps the periphery of the investment cones, actin-containing structures hypothesized to support the motor function for cytoplasmic stripping of the tail. Acam cannot be detected in mature sperm by immunolocalization, but immunoblotting established that Acam is present in sperm stored in mated females, suggesting epitope masking during final maturation. Proteins more related to Acam than Cam are present in the testes of other Drosophila species and a mammalian species, the mouse.
Collapse
Affiliation(s)
- A Q Lu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
27
|
Timakov B, Zhang P. Genetic analysis of a Y-chromosome region that induces triplosterile phenotypes and is essential for spermatid individualization in Drosophila melanogaster. Genetics 2000; 155:179-89. [PMID: 10790393 PMCID: PMC1461087 DOI: 10.1093/genetics/155.1.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterochromatic Y chromosome of Drosophila melanogaster contains approximately 40 Mb of DNA but has only six loci mutable to male sterility. Region h1-h9 on YL, which carries the kl-3 and kl-5 loci, induces male sterility when present in three copies. We show that three separate segments within the region are responsible for the triplosterility and have an additive effect on male fertility. The triplosterile males displayed pleiotropic defects, beginning at early postmeiotic stages. However, the triplosterility was unaffected by kl-3 or kl-5 alleles. These data suggest that region h1-h9 is complex and may contain novel functions in addition to those of the previously identified kl-3 and kl-5 loci. The kl-3 and kl-5 mutations as well as deficiencies within region h1-h9 result in loss of the spermatid axonemal outer dynein arms. Examination using fluorescent probes showed that males deficient for h1-h3 or h4-h9 displayed a postmeiotic lesion with disrupted individualization complexes scattered along the spermatid bundle. In contrast, the kl-3 and kl-5 mutations had no effect on spermatid individualization despite the defect in the axonemes. These results demonstrate that region h1-h9 carries genetically separable functions: one required for spermatid individualization and the other essential for assembling the axonemal dynein arms.
Collapse
Affiliation(s)
- B Timakov
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-2131, USA
| | | |
Collapse
|
28
|
Kurek R, Reugels AM, Glätzer KH, Bünemann H. The Y chromosomal fertility factor Threads in Drosophila hydei harbors a functional gene encoding an axonemal dynein beta heavy chain protein. Genetics 1998; 149:1363-76. [PMID: 9649526 PMCID: PMC1460245 DOI: 10.1093/genetics/149.3.1363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand the contradiction between megabase-sized lampbrush loops and putative protein encoding genes both associated with the loci of Y chromosomal fertility genes of Drosophila on the molecular level, we used PCR-mediated cloning to identify and isolate the cDNA sequence of the Y chromosomal Drosophila hydei gene DhDhc7(Y). Alignment of the sequences of the putative protein DhDhc7(Y) and the outer arm dynein beta heavy chain protein DYH2 of Tripneustes gratilla shows homology over the entire length of the protein chains. Therefore the proteins can be assumed to fulfill orthologous functions within the sperm tail axonemes of both species. Functional dynein beta heavy chain molecules, however, are necessary for the assembly and attachment of outer dynein arms within the sperm tail axoneme. Localization of DhDhc7(Y) to the fertility factor Threads, comprising at least 5.1 Mb of transcriptionally active repetitive DNA, results from an infertile Threads- mutant where large clusters of Threads specifically transcribed satellites and parts of DhDhc7(Y) encoding sequences are missing simultaneously. Consequently, the complete lack of the outer dynein arms in Threads- males most probably causes sperm immotility and hence infertility of the fly. Moreover, preliminary sequence analysis and several other features support the hypothesis that DhDhc7(Y) on the lampbrush loops Threads in D. hydei and Dhc-Yh3 on the lampbrush loops kl-5 in Drosophila melanogaster on the heterochromatic Y chromosome of both species might indeed code for orthologous dynein beta heavy chain proteins.
Collapse
Affiliation(s)
- R Kurek
- Dipartimento di Genetica e Biologia Molecolare, Universita di Roma 'La Sapienza,' I-00185 Roma, Italia
| | | | | | | |
Collapse
|
29
|
Kalmykova AI, Dobritsa AA, Gvozdev VA. Su(Ste) diverged tandem repeats in a Y chromosome of Drosophila melanogaster are transcribed and variously processed. Genetics 1998; 148:243-9. [PMID: 9475736 PMCID: PMC1459772 DOI: 10.1093/genetics/148.1.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the organization and transcription of diverged tandemly repeated Y-linked Su(Ste) genes that are considered as suppressors of testis-expressed X-linked-repeated Stellate genes that encode a protein sharing extensive homology with beta-subunit of casein kinase 2. Clustering of restriction variants is confirmed. Size variants of Su(Ste) repeats appeared to be nonhomogeneously distributed among the P1 phage clones. Different ways of Su(Ste) RNA processing because of the appearance of new splice sites and polyadenylation signals were detected. The high extent of homology between Stellate and Su(Ste) repeats suggested a possibility of Stellate suppression by antisense transcription of Su(Ste) elements. The detection of only "sense" Su(Ste) cDNAs in testis cDNA library allows us to reject this proposal. The genomic and cDNA clones are shown to be equally diverged. This indicates widespread rather than restricted transcription capacity of these repeats.
Collapse
Affiliation(s)
- A I Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
30
|
Abstract
Centromeres play a critical role in chromosome inheritance but are among the most difficult genomic components to analyze in multicellular eukaryotes. Here, we present a highly detailed molecular structure of a functional centromere in a multicellular organism. The centromere of the Drosophila minichromosome Dp1187 is contained within a 420 kb region of centric heterochromatin. We have used a new approach to characterize the detailed structure of this centromere and found that it is primarily composed of satellites and single, complete transposable elements. In the rest of the Drosophila genome, these satellites and transposable elements are neither unique to the centromeres nor present at all centromeres. We discuss the impact of these results on our understanding of heterochromatin structure and on the determinants of centromere identity and function.
Collapse
Affiliation(s)
- X Sun
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
31
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
32
|
Heatwole VM, Haynes SR. Association of RB97D, an RRM protein required for male fertility, with a Y chromosome lampbrush loop in Drosophila spermatocytes. Chromosoma 1996; 105:285-92. [PMID: 8939821 DOI: 10.1007/bf02524646] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Y chromosome of Drosophila melanogaster, which is required only for male fertility, contains six loci that are essential for spermatogenesis. In primary spermatocytes, three of these loci form large lampbrush loops containing RNA transcripts and associated proteins. The identities and functions of these Y chromosome loop-binding proteins are largely unknown. This report demonstrates that the RB97D protein, which is essential for spermatogenesis, bound to a specific lampbrush loop. RB97D contains two copies of a well-characterized RNA binding domain, the RNA recognition motif, followed by a proline-glutamine rich domain. Immunohistochemical and immunofluorescence experiments showed that in the testis, RB97D was found only in primary spermatocyte nuclei and associated with the C loop from the ks-1 fertility locus in an RNAse-sensitive manner. The anti-RB97D antibodies also bound a single Y chromosome loop in D. hydei, suggesting that the protein and its loop-binding function have been evolutionarily conserved. These results demonstrate that the proteins that bind lampbrush loops can be essential for fertility. Since RB97D was present only premeiotically, its function is likely to be directly related to the metabolism of the C loop transcripts.
Collapse
Affiliation(s)
- V M Heatwole
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2785, USA
| | | |
Collapse
|
33
|
Rouleux-Bonnin F, Renault S, Bigot Y, Periquet G. Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:752-9. [PMID: 8706677 DOI: 10.1111/j.1432-1033.1996.0752w.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four satellite DNA subfamilies Ps, Pv, Pv65 and Ec, resulting from the evolution of a common ancestral motif, were isolated and characterized in the genomic DNA of Diprion pini, a phytophagous of Pinus sylvestris. Consensus sequences were 148-312 bp long. Sequence analyses revealed that these satellite subfamilies have evolved from a 45-bp ancestral motif. The amounts of each satellite in the genome (0 - 10%) and the accessibility of the DNA to restriction enzymes were sex dependent. The migration of each monomer in polyacrylamide gels and the electrophoretic migration of d(AT) n > or = 3 residues showed that all four satellite subfamilies are curved. Their transcription was analyzed using reverse transcription and the polymerase chain reaction. Three satellite DNA subfamilies were transcribed on both strands, and in both sexes. However, the female satellite DNAs seem to be more actively transcribed than those of males, indicating that transcription is not constitutive. The lack of any significant open reading frame in satellite monomers indicates that the RNA may function as structural or catalytic RNA rather than encoding protein.
Collapse
Affiliation(s)
- F Rouleux-Bonnin
- Institut de Recherche sur la Biologie de lInsecte, Faculté des Sciences, Tours, France
| | | | | | | |
Collapse
|
34
|
Hackstein JH, Hochstenbach R. The elusive fertility genes of Drosophila: the ultimate haven for selfish genetic elements. Trends Genet 1995; 11:195-200. [PMID: 7785079 DOI: 10.1016/s0168-9525(00)89043-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Y chromosomes of Drosophila are necessary for male fertility. They carry giant genes that have some unconventional properties besides controlling the motility of the spermatozoa. Classical genetic and molecular studies suggest that evolution has favoured the close association between these genes and repetitive DNA sequences with 'selfish' traits.
Collapse
Affiliation(s)
- J H Hackstein
- Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, The Netherlands
| | | |
Collapse
|
35
|
Hochstenbach R, Harhangi H, Schouren K, Hennig W. Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei. J Mol Evol 1994; 39:452-65. [PMID: 7807535 DOI: 10.1007/bf00173414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the evolution of the Y chromosome of Drosophila hydei, retrotransposons became incorporated into the lampbrush loop pairs formed by several of the male fertility genes on this chromosome. Although insertions of retrotransposons are involved in many spontaneous mutations, they do not affect the functions of these genes. We have sequenced gypsy elements that are expressed as constituents of male fertility gene Q in the lampbrush loop pair Nooses. We find that these gypsy elements are all truncated and specifically lost those sequences that may interfere with the continuity of lampbrush loop transcription. Only defective coding regions are found within the loop. Gypsy is not transcribed in loops of many other Drosophila species harboring the family. These results suggest that any contribution of gypsy to the function of male fertility gene Q does not depend on a conserved DNA sequence.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Varadaraj K, Skinner DM. Cytoplasmic localization of transcripts of a complex G+C-rich crab satellite DNA. Chromosoma 1994; 103:423-31. [PMID: 7859563 DOI: 10.1007/bf00362287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The primary sequence and higher order structures of a G+C-rich satellite DNA of the Bermuda land crab Gecarcinus lateralis have been described previously. The repeat unit of the satellite is approximately 2.1 kb. In exploring a possible function for this satellite, we asked whether it is transcribed. As a probe for transcripts, we used a segment of DNA amplified from a 368 bp EcoRI fragment from the very highly conserved 3' end of the satellite DNA. During polymerase chain reaction (PCR) amplification, the probe was simultaneously either radiolabeled or biotinylated. Tissue- and stage-specific transcripts were observed when blots of poly(A)+ mRNAs recovered from polysomes isolated from crab tissues [including midgut gland (hepatopancreas), limb bud, and claw muscle] were probed with the satellite DNA fragment. The presence of satellite transcripts in polysomal mRNAs is strong evidence that the transcripts had reached the cytoplasm. To corroborate the presence of transcripts in the cytoplasm, we investigated in situ hybridization of satellite probes with RNAs in tissue sections. Biotinylated satellite DNA probes were applied to sections of midgut gland, limb bud papilla, ovary, or testis of anecdysial crabs. Retention of RNAs in tissue sections was improved by UV-irradiation prior to hybridization. Transcripts were abundant in the cytoplasm of all tissues except testis. Sections of crab midgut gland treated with RNase A prior to hybridization and sections of mouse pancreatic tumor served as controls; neither showed any signals with the probe.
Collapse
Affiliation(s)
- K Varadaraj
- Biology Division, Oak Ridge National Laboratory, TN 37831
| | | |
Collapse
|
37
|
Hochstenbach R, Knops M, Hennig W. Discrimination of related transcribed and non-transcribed repetitive DNA sequences from the Y chromosomes of Drosophila hydei and Drosophila eohydei. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:54-62. [PMID: 8190071 DOI: 10.1007/bf00283876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The short arm of the Y chromosome of Drosophila hydei carries a single male fertility gene, gene Q, which forms the lampbrush loop pair Nooses. Conflicting observations have been reported concerning the identity of the repetitive DNA sequences that are transcribed in this loop pair. It has been claimed by other investigators that the loop transcripts contain repeats of two distinct, but related families of Y-specific repetitive DNA sequences, ay1 and YsI. We reinvestigated this issue, using as probes single ay1 and YsI repeats which, under stringent conditions, hybridize only to members of their own family. Under non-stringent conditions, both repeats hybridize in situ to Nooses transcripts. However, if hybridization conditions are stringent, only the ay1 probe hybridizes to loop transcripts. Hybridizations to Northern blots of testis RNA confirm these results. Further, YsI repeats are not found the closely related species D. eohydei. We conclude that the YsI repeats are not relevant for the function of fertility gene Q.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
38
|
Hennig W. Conventional protein coding genes in the Drosophila Y chromosome: is the puzzle of the fertility gene function solved? Proc Natl Acad Sci U S A 1993; 90:10904-6. [PMID: 8248191 PMCID: PMC47889 DOI: 10.1073/pnas.90.23.10904] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- W Hennig
- Department of Molecular and Developmental Genetics, University of Nijmegen, The Netherlands
| |
Collapse
|
39
|
Gepner J, Hays TS. A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. Proc Natl Acad Sci U S A 1993; 90:11132-6. [PMID: 8248219 PMCID: PMC47936 DOI: 10.1073/pnas.90.23.11132] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A clone encoding a portion of the highly conserved ATP-binding domain of a dynein heavy-chain polypeptide was mapped to a region of the Drosophila melanogaster Y chromosome. Dyneins are large multisubunit enzymes that utilize the hydrolysis of ATP to move along microtubules. They were first identified as the motors that provide the force for flagellar and ciliary bending. Seven different dynein heavy-chain genes have been identified in D. melanogaster by PCR. In the present study, we demonstrate that one of the dynein genes, Dhc-Yh3, is located in Y chromosome region h3, which is contained within kl-5, a locus required for male fertility. The PCR clone derived from Dhc-Yh3 is 85% identical to the corresponding region of the beta heavy chain of sea urchin flagellar dynein but only 53% identical to a cytoplasmic dynein heavy chain from Drosophila. In situ hybridization to Drosophila testes shows Dhc-Yh3 is expressed in wild-type males but not in males missing the kl-5 region. These results are consistent with the hypothesis that the Y chromosome is needed for male fertility because it contains conventional genes that function during spermiogenesis.
Collapse
Affiliation(s)
- J Gepner
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
40
|
Hochstenbach R, Wilbrink M, Suijkerbuijk R, Hennig W. Localization of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei by fluorescence in situ hybridization. Chromosoma 1993; 102:546-52. [PMID: 8243166 DOI: 10.1007/bf00368347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used fluorescence in situ hybridization to map the positions of the different repetitive DNA sequences from the region forming the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. This region harbours a megabase cluster of tandemly organized repeats of the Y-specific ay1 family and a megabase cluster of tandem repeats of the related Y-specific YsI family. In addition, ay1 repeats also occur in short blocks that are interspersed by other repetitive DNA sequences that we call Y-associated, since they have additional copies on other chromosomes. Using specific probes for ay1, YsI and Y-associated DNA sequences, we show that there is one large proximal cluster of YsI repeats and one, more distally located, large cluster of ay1 repeats. The Y-chromosomal copies of the Y-associated sequences are located in the most distal part of the ay1 cluster. This is consistent with the juxtaposition of ay1 and Y-associated sequences in more than 300 kb of cloned genomic DNA. Since both ay1 and Y-associated sequences have been shown to be transcribed in the Nooses, the lampbrush loop is formed in a distal region of the short arm of the Y chromosome, adjacent to the terminally located nucleolus organizer region. The clusters of homogeneous ay1 and YsI repeats are of no functional significance for the formation of the lampbrush loop.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Abstract
We review what is known about the transcriptional inactivation and condensation of heteromorphic sex chromosomes in contrast to the activation of homomorphic sex chromosomes during meiotic prephase in animals. We relate these cytological and transcriptional features to the recombination status of the sex chromosomes. We propose that sex chromosome condensation is a meiotic adaptation to prevent the initiation of potentially damaging recombination events in nonhomologous regions of the X and Y chromosome.
Collapse
Affiliation(s)
- B D McKee
- Department of Zoology, University of Tennessee, Knoxville 37996
| | | |
Collapse
|
42
|
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4391
| | | |
Collapse
|