1
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
2
|
Mühlradt PF, Meyer H, Jansen R. Identification of S-(2,3-dihydroxypropyl)cystein in a macrophage-activating lipopeptide from Mycoplasma fermentans. Biochemistry 1996; 35:7781-6. [PMID: 8672478 DOI: 10.1021/bi9602831] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mycoplasmas are capable of stimulating monocytes and macrophages to release cytokines, prostaglandins, and nitric oxide. The aim of this study was to characterize the chemical nature of the previously isolated [Mühlradt, P. F., & Frisch, M. (1994) Infect. Immun. 62, 3801-3807] macrophage-stimulating material "MDHM" from Mycoplasma fermentans. Mycoplasmas were delipidated, and MDHM activity was extracted with octyl glucoside and further purified by reversed-phase HPLC. Macrophage-stimulating activity was monitored by nitric oxide release from peritoneal macrophages from C3H/HeJ endotoxin low responder mice. HPLC-purified MDHM was rechromatographed on an analytic scale RP 18 column before and after proteinase K treatment. Proteinase treatment did not diminish biological activity but shifted MDHM elution toward higher lipophilicity, suggesting that the macrophage-stimulating activity might reside in the lipopeptide moiety of a lipoprotein. Proteinase K-treated MDHM was hydrolyzed, amino groups were dansylated, and the dansylated material was isolated by HPLC. Dansylated S-(2,3-dihydroxypropyl)cystein (glycerylcystein thioether), typical for Braun's murein lipoprotein, and Dns-Gly and Dns-Thr were identified by tandem mass spectrometry. These amino acids were isolated from biologically active but not from the neighboring inactive HPLC fractions. IR spectra from proteinase K-treated, HPLC-purified MDHM and those from the synthetic lipopeptide [2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-CysSerSer AsnAla were very similar. The data, taken together, indicate that lipoproteins of a nature previously detected in eubacteria are expressed in M. fermentans and that at least one of these lipoproteins and a lipopeptide derived from it constitute the macrophage-activating principle MDHM from these mycoplasmas.
Collapse
Affiliation(s)
- P F Mühlradt
- GBF, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | | | |
Collapse
|
3
|
Frisch M, Gradehandt G, Mühlradt PF. Mycoplasma fermentans-derived lipid inhibits class II major histocompatibility complex expression without mediation by interleukin-6, interleukin-10, tumor necrosis factor, transforming growth factor-beta, type I interferon, prostaglandins or nitric oxide. Eur J Immunol 1996; 26:1050-7. [PMID: 8647166 DOI: 10.1002/eji.1830260514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mycoplasma cause several diseases in man and animals. Some strains can chronically infect humans, leading to fever or inflammatory syndromes such as arthritis, particularly in immunosuppressed patients. A set of pathogenicity factors shared by many mollicutes may be membrane components that activate macrophages to secrete cytokines and other inflammatory mediators. Mycoplasma-derived high molecular weight material (MDHM) is a macrophage-activating amphiphilic lipid which was purified from Mycoplasma fermentans. We studied the influence of MDHM on the expression of major histocompatibility complex (MHC) class II molecules by mouse resident peritoneal macrophages with an ELISA. Highly purified MDHM at 4 ng/ml and 0.8 microgram/ml crude heat-killed M. fermentans (concentrations chosen to give maximal responses) suppressed interferon (IFN)-gamma-dependent class II MHC induction when added simultaneously with IFN-gamma. MDHM was not toxic and did not result in loss of adherent cells. Kinetic data showed that MDHM first up-regulated, then down-regulated the expression of preformed class II MHC molecules, while expression of Mac-1 and F4/80 antigens remained constant. MDHM-dependent suppression of class II MHC molecule expression resulted in impaired antigen presentation to the helper T cell line D10.G4.1. We further attempted to identify hypothetical products of MDHM-stimulated macrophages as secondary mediators of class II MHC suppression such as were described for lipopolysaccharide (LPS)-stimulated macrophages. Type I IFN, prostaglandins and nitric oxide, all reported to cause down-regulation of class II MHC, could be excluded in this context. Of the cytokines tumor necrosis factor, interleukin (IL)-6, IL-10 and transforming growth factor-beta, only IL-10 inhibited class II MHC expression, although less effectively than MDHM. The involvement of IL-10 was ruled out, as no evidence for its MDHM-dependent formation could be found. Our data suggest that MDHM interferes with class II MHC expression by up-regulating its turnover, and at the same time, inhibits the formation of new class II MHC molecules.
Collapse
Affiliation(s)
- M Frisch
- Immunobiology Research Group, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | | | |
Collapse
|
4
|
Kostyal DA, Butler GH, Beezhold DH. Mycoplasma hyorhinis molecules that induce tumor necrosis factor alpha secretion by human monocytes. Infect Immun 1995; 63:3858-63. [PMID: 7558292 PMCID: PMC173543 DOI: 10.1128/iai.63.10.3858-3863.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma hyorhinis has been shown to induce the secretion of tumor necrosis factor alpha (TNF-alpha) from monocytes. To identify the molecules responsible for this activity, we separated sonicated M. hyorhinis lysate material by centrifugation at 100,000 x g into soluble (S) and particulate (P) fractions. The fractions were assayed for TNF-alpha-inducing activity by the L929 bioassay. Both the soluble and particulate fractions were able to induce TNF-alpha in roughly equal amounts. The optimum dose for both fractions was 1 micrograms/ml. Proteinase K treatment of either fraction eliminated the activity, suggesting that a protein component is involved in induction. Phase partitioning into Triton X-114 aqueous (A) and detergent (D) phases showed that the soluble fraction was composed of 80% aqueous-phase proteins, while the particulate fraction was > 75% detergent-phase proteins. All four fractions (SA, SD, PA, and PD) were able to induce TNF-alpha release. Treatment with NaIO4 to remove carbohydrate reduced the inducing activity of the SA phase by 80%, whereas that of the other fractions was unaffected by this treatment. The M(r)S of the inducing activity were determined by the monocyte Western (immunoblot) technique. The SA phase activity was associated with a single periodate-sensitive peak of 69 to 75 kDa. The two detergent phases had similar profiles of inducing activity, containing four peaks of activity. These peaks corresponded to 48 to 52, 43 to 45, 39 to 40, and 31 to 32 kDa. The PA fraction also contained four peaks of activity, 69 to 75, 55 to 57, 48 to 52, and 39 to 40 kDa. Thus, both a protein and glycan moiety from M. hyorhinis are capable of inducing TNF-alpha release from human monocytes.
Collapse
Affiliation(s)
- D A Kostyal
- Laboratory of Macrophage Biology, Guthrie Foundation for Medical Research, Sayre, Pennsylvania 18840, USA
| | | | | |
Collapse
|
5
|
Mühlradt PF, Frisch M. Purification and partial biochemical characterization of a Mycoplasma fermentans-derived substance that activates macrophages to release nitric oxide, tumor necrosis factor, and interleukin-6. Infect Immun 1994; 62:3801-7. [PMID: 8063396 PMCID: PMC303034 DOI: 10.1128/iai.62.9.3801-3807.1994] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycoplasmal products may exert a number of diverse in vitro effects on cells of the immune system. A macrophage-activating substance from Mycoplasma fermentans was described in this laboratory and named mycoplasma-derived high-molecular-weight material (MDHM). Using synthesis of nitric oxide by peritoneal cells from endotoxin low-responder mice as an assay system, MDHM was purified as follows. After freeze-thawing of M. fermentans, MDHM activity was sedimented with the membrane fraction. Membranes were delipidated with chloroform-methanol, and MDHM activity was extracted with octyl glucoside. Coextracted proteins were degraded by proteinase K. MDHM was further purified by reversed-phase high-pressure liquid chromatography and eluted in one major and one minor peak of activity. Neither carbohydrates nor amino acids were found as constituents. MDHM had the following properties: it partitioned into the phenol phase upon phenol-water extraction and into the Triton phase after extraction with Triton X-114. MDHM was not inactivated by either phospholipase A2 or triglyceride lipases. However, mild periodate treatment led to a > 95% loss of activity. Also, alkaline hydrolysis at 25 degrees C completely abolished MDHM activity with a half-life of 2 min. MDHM activity was spread out over a wide molecular weight range upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes, whereas after proteinase treatment MDHM activity migrated close to the front. These features of MDHM, taken together, speak in favor of an amphiphilic molecule with a lipid moiety carrying fatty acids in ester linkage and a polyol moiety of unknown character. MDHM was active in the nanogram-per-milliliter range, activating macrophages to release nitric oxide, interleukin-6, and tumor necrosis factor.
Collapse
Affiliation(s)
- P F Mühlradt
- Immunology Research Group, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | |
Collapse
|
6
|
Caplan S, Gallily R, Barenholz Y. Characterization and purification of a mycoplasma membrane-derived macrophage-activating factor. Cancer Immunol Immunother 1994; 39:27-33. [PMID: 8044823 PMCID: PMC11037937 DOI: 10.1007/bf01517177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1993] [Accepted: 03/17/1994] [Indexed: 01/28/2023]
Abstract
A highly hydrophobic component derived from the membrane of Mycoplasma capricolum has been characterized, purified and assessed for its ability to activate macrophages to tumor cytotoxicity. Initially, crude membranes were evaluated for their solubility in a wide range of solvents. Despite differential solubility in the various solvents, the mycoplasma membranes retained their ability to potentiate macrophage tumor cytotoxicity. Mycoplasma membranes were further characterized by appraising their macrophage-activating ability subsequent to various chemical treatments: cleavage of ester and thioester bonds, oxidation of vicinal hydroxyl groups, and exposure to a broad range of pH. Only strong alkaline treatment (pH > 12) caused a reduction in mycoplasma membrane activity; all other chemical treatments were inconsequential. With potential therapeutic applications in mind, mycoplasma membranes were subjected to various physical treatments including heating, freezing/thawing, sonication, lyophilization and storage. The ability of the membranes to induce macrophage activation was stably maintained following all these treatments. Purification of membranes was initiated by a chloroform/methanol lipid extraction. Macrophage-activating ability was found predominantly in the interphase. Proteolytic cleavage with trypsin increased specific activity at least sixfold. Trypsinized fractions were solubilized in 2-chloroethanol and gel filtration was performed on a hydroxylated Sephadex LH-60 column. The active fraction from this column had a further tenfold increase in specific activity. Subsequent rounds of reverse-phase HPLC on this fraction yielded three to four peaks absorbing at 280 nm, of which only one had macrophage-activating ability.
Collapse
Affiliation(s)
- S Caplan
- Lautenberg Center for General and Tumor Immunology, Hebrew University Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
7
|
Minion FC, Jarvill-Taylor KJ, Billings DE, Tigges E. Membrane-associated nuclease activities in mycoplasmas. J Bacteriol 1993; 175:7842-7. [PMID: 8253673 PMCID: PMC206960 DOI: 10.1128/jb.175.24.7842-7847.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Membrane-associated nucleases of various mycoplasmal species were investigated by using two nuclease assays. A lambda DNA assay was developed to measure nuclease activity associated with whole-cell suspensions, activity released from intact cells, and activity associated with detergent-disrupted cells. In most species, nuclease activities were entirely membrane associated, and disruption by a detergent had a stimulatory effect on these activities. All mycoplasmal species contained nuclease activity, but Mycoplasma capricolum was unusual because its activity was dependent upon magnesium and was inhibited by calcium. We developed a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system that produced reproducible nuclease patterns, and this system was used to determine the apparent molecular weights of the nuclease proteins. An examination of 20 mycoplasmal species failed to identify common bands in their nuclease patterns. An examination of 11 Mycoplasma pulmonis strains, however, indicated that nuclease patterns on polyacrylamide gels may provide a means for categorizing strains within a species. Our results suggest that nucleases are important constituents of mycoplasmal membranes and may be involved in the acquisition of host nucleic acids required for growth.
Collapse
Affiliation(s)
- F C Minion
- Department of Microbiology, Immunology and Preventive Medicine, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|
8
|
Gallily R, Salman M, Tarshis M, Rottem S. Mycoplasma fermentans (incognitus strain) induces TNF alpha and IL-1 production by human monocytes and murine macrophages. Immunol Lett 1992; 34:27-30. [PMID: 1478703 DOI: 10.1016/0165-2478(92)90023-h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have demonstrated that Mycoplasma fermentans (incognitus strain), as well as M. fermentans KL4, PG 18 and IM 1 strains have the ability to activate human peripheral blood monocytes and murine macrophages of two inbred strains to secrete a high level of tumor necrosis factor alpha (TNF alpha) in a dose-dependent manner. Secretion of interleukin-1 (IL-1) was also stimulated following the incubation of human monocytes with the organism. We suggest that cytokine secretion following infection with M. fermentans (incognitus strain) that was detected in AIDS patients may contribute to the pathological manifestations, including cachexia, in this disease.
Collapse
Affiliation(s)
- R Gallily
- Lautenberg Center for General and Tumor Immunology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|