1
|
Bibli SI, Papapetropoulos A, Iliodromitis EK, Daiber A, Randriamboavonjy V, Steven S, Brouckaert P, Chatzianastasiou A, Kypreos KE, Hausenloy DJ, Fleming I, Andreadou I. Nitroglycerine limits infarct size through S-nitrosation of cyclophilin D: a novel mechanism for an old drug. Cardiovasc Res 2020; 115:625-636. [PMID: 30165375 DOI: 10.1093/cvr/cvy222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS Nitroglycerine (NTG) given prior to an ischaemic insult exerts cardioprotective effects. However, whether administration of an acute low dose of NTG in a clinically relevant manner following an ischaemic episode limits infarct size, has not yet been explored. METHODS AND RESULTS Adult mice were subjected to acute myocardial infarction in vivo and then treated with vehicle or low-dose NTG prior to reperfusion. This treatment regimen minimized myocardial infarct size without affecting haemodynamic parameters but the protective effect was absent in mice rendered tolerant to the drug. Mechanistically, NTG was shown to nitrosate and inhibit cyclophilin D (CypD), and NTG administration failed to limit infarct size in CypD knockout mice. Additional experiments revealed lack of the NTG protective effect following genetic (knockout mice) or pharmacological inhibition (L-NAME treatment) of the endothelial nitric oxide synthase (eNOS). The protective effect of NTG was attributed to preservation of the eNOS dimer. Moreover, NTG retained its cardioprotective effects in a model of endothelial dysfunction (ApoE knockout) by preserving CypD nitrosation. Human ischaemic heart biopsies revealed reduced eNOS activity and exhibited reduced CypD nitrosation. CONCLUSION Low-dose NTG given prior to reperfusion reduces myocardial infarct size by preserving eNOS function, and the subsequent eNOS-dependent S-nitrosation of CypD, inhibiting cardiomyocyte necrosis. This novel pharmacological action of NTG warrants confirmation in clinical studies, although our data in human biopsies provide promising preliminary results.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece.,Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Efstathios K Iliodromitis
- Faculty of Medicine, Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Daiber
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,University Medical Center of Mainz, Center for Cardiology, Cardiology I, Molecular Cardiology, Mainz, Germany
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Steven
- University Medical Center of Mainz, Center for Cardiology, Cardiology I, Molecular Cardiology, Mainz, Germany.,University Medical Center of Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Athanasia Chatzianastasiou
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ioanna Andreadou
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
2
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S. Nitric Oxide Inhalation Improves Microvascular Flow and Decreases Infarction Size After Myocardial Ischemia and Reperfusion. J Am Coll Cardiol 2007; 50:808-17. [PMID: 17707188 DOI: 10.1016/j.jacc.2007.04.069] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 04/02/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The purpose of this study was to test if nitric oxide (NO) could improve microvascular perfusion and decrease tissue injury in a porcine model of myocardial ischemia and reperfusion (I/R). BACKGROUND Inhaled NO is a selective pulmonary vasodilator with biologic effects in remote vascular beds. METHODS In 37 pigs, the midportion of the left anterior descending coronary artery was occluded for 50 min followed by 4 h of reperfusion. Pigs were treated with a saline infusion (control; n = 14), intravenous nitroglycerin (IV-NTG) at 2 microg/kg/min (n = 11), or inhaled nitric oxide (iNO) at 80 parts per million (n = 12) beginning 10 min before balloon deflation and continuing throughout reperfusion. RESULTS Total myocardial oxidized NO species in the infarct core was greater in the iNO pigs than in the control or IV-NTG pigs (0.60 +/- 0.05 nmol/mg tissue vs. 0.40 +/- 0.03 nmol/mg tissue and 0.40 +/- 0.02 nmol/mg tissue, respectively; p < 0.01 for both). Infarct size, expressed as percentage of left ventricle area at risk (AAR), was smaller in the iNO pigs than in the control or IV-NTG pigs (31 +/- 6% AAR vs. 58 +/- 7% AAR and 46 +/- 7% AAR, respectively; p < 0.05 for both) and was associated with less creatine phosphokinase-MB release. Inhaled NO improved endocardial and epicardial blood flow in the infarct zone, as measured using colored microspheres (p < 0.001 vs. control and IV-NTG). Moreover, NO inhalation reduced leukocyte infiltration, as reflected by decreased cardiac myeloperoxidase activity (0.8 +/- 0.2 U/mg tissue vs. 2.3 +/- 0.8 U/mg tissue in control and 1.4 +/- 0.4 U/mg tissue in IV-NTG; p < 0.05 for both) and decreased cardiomyocyte apoptosis in the infarct border zone. CONCLUSIONS Inhalation of NO just before and during coronary reperfusion significantly improves microvascular perfusion, reduces infarct size, and may offer an attractive and novel treatment of myocardial infarction.
Collapse
Affiliation(s)
- Xiaoshun Liu
- Department of Cardiology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Akiyama K, Hirota J, Takiguchi M, Ohsawa S, Hashimoto A. The release of nitroglycerin absorbed into the central venous catheter. Surg Today 2000; 27:936-40. [PMID: 10870580 DOI: 10.1007/bf02388142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was conducted to evaluate the release of nitroglycerin (NG) that has been absorbed into the central venous catheter. A 0.05% NG solution was infused through a central venous catheter and the flow rates were set at 1, 5, or 10 ml/h, given over 12, 24, or 48 h. The catheter was flushed with lactate Ringer solution after completion of the NG infusion. The elution of the lactate Ringer solution from the tip of the catheter was then collected and assayed for its NG concentration by high performance liquid chromatography (HPLC). A higher concentration of NG was released with a faster flow rate and a longer infusion. The high level of NG release continued during the first 20 min, and ranged from a minimum of 0.07 mg/ml to a maximum that exceeded 0.15 mg/ml. Subsequently, the NG concentration gradually declined, but low concentrations of 0.006-0.02 mg/ml were still maintained 360 min later. Thus, it is suggested that if a catheter such as the Swan-Ganz continues to be used after the completion of a NG infusion, certain pharmacological effects due to the absorption of NG into the catheter body should be expected for at least 60 min.
Collapse
Affiliation(s)
- K Akiyama
- Department of Cardiovascular Surgery, Iwaki Kyoritsu General Hospital, Fukushima, Japan
| | | | | | | | | |
Collapse
|