1
|
Chen B, Shi Y, Sun Y, Lu L, Wang L, Liu Z, Cheng S. Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities. ABIOTECH 2024; 5:71-93. [PMID: 38576433 PMCID: PMC10987475 DOI: 10.1007/s42994-023-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 04/06/2024]
Abstract
The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.
Collapse
Affiliation(s)
- Baizhi Chen
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yan Shi
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yuchen Sun
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Lu Lu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Zijian Liu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| |
Collapse
|
2
|
Weeden NF, Lavin M, Abbo S, Coyne CJ, McPhee K. A hypervariable intron of the STAYGREEN locus provides excellent discrimination among Pisum fulvum accessions and reveals evidence for a relatively recent hybridization event with Pisum sativum. FRONTIERS IN PLANT SCIENCE 2023; 14:1233280. [PMID: 37692437 PMCID: PMC10492584 DOI: 10.3389/fpls.2023.1233280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
An analysis of 82 non-synonymous Pisum fulvum accessions for sequence variation in a fragment of the STAYGREEN (SGR) locus revealed 57 alleles, most of which differed in indel structure. Eight additional P. fulvum accessions, each supposedly synonymous with a different accession of the initial group, were also analyzed. In every case the paired synonymous accessions possessed the same SGR sequence but varied slightly for a 6-trait morphological phenotype, indicating that SGR sequence is a much more reliable indicator of accession identity than is a morphological characterization. SGR sequence analysis confirmed our previous finding that P. fulvum accessions separate into two allele groups. This division was not supported by results of previous studies that were based on sequences distributed across the entire genome, suggesting that the division may have been produced by selection at a nearby locus and that the SGR phylogeny may not be good indicator of overall relationships within the species. One P. fulvum accession, PI 595941 (=JI1796), displayed an SGR sequence outside the variation typical of the species. Instead, its allele resembled alleles limited to a set of Pisum sativum landraces from the Middle East, suggesting hybridization between ancestors of PI 595941 and some primitive form of domesticated P. sativum. With one exception from the extreme northwest corner of Israel, P. fulvum accessions collected north of latitude 35.5° N were fixed for alleles from group A. These northern accessions also displayed greatly reduced SGR sequence diversity compared to group A accessions collected from other regions, suggesting that the northern populations may represent recent extensions of the range of the species. Group B accessions were distributed from Lake Tiberias south and were generally sympatric with the southern group A accessions. Although group B accessions occupied a smaller area than group A, the SGR sequence diversity in this group (28 alleles in 33 accessions) exceeded that for group A.
Collapse
Affiliation(s)
- N. F. Weeden
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| | - M. Lavin
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| | - S. Abbo
- The Robert H. Smith Faculty of Agriculture, Food and Environment, and the Jacob & Rachel Liss Chair in Agronomy at the Hebrew University of Jerusalem, Rehovot, Israel
| | - C. J. Coyne
- Plant Germplasm Introduction and Testing Research, Agricultural Research Service (USDA), Pullman, WA, United States
| | - K. McPhee
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Shirasawa K, Sasaki K, Hirakawa H, Isobe S. Genomic region associated with pod color variation in pea (Pisum sativum). G3 (BETHESDA, MD.) 2021; 11:jkab081. [PMID: 33720317 PMCID: PMC8104947 DOI: 10.1093/g3journal/jkab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 01/08/2023]
Abstract
Pea (Pisum sativum) was chosen as the research material by Gregor Mendel to discover the laws of inheritance. Out of seven traits studied by Mendel, genes controlling three traits including pod shape, pod color, and flower position have not been identified to date. With the aim of identifying the genomic region controlling pod color, we determined the genome sequence of a pea line with yellow pods. Genome sequence reads obtained using a Nanopore sequencing technology were assembled into 117,981 contigs (3.3 Gb), with an N50 value of 51.2 kb. A total of 531,242 potential protein-coding genes were predicted, of which 519,349 (2.8 Gb) were located within repetitive sequences (2.8 Gb). The assembled sequences were ordered using a reference as a guide to build pseudomolecules. Subsequent genetic and association analyses led to the identification of a genomic region that controls pea pod color. DNA sequences at this genomic location and transcriptome profiles of green and yellow pod lines were analyzed, and genes encoding 3' exoribonucleases were selected as potential candidates controlling pod color. The results presented in this study are expected to accelerate pan-genome studies in pea and facilitate the identification of the gene controlling one of the traits studied by Mendel.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuhiro Sasaki
- Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0001, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
4
|
Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d'Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar'an B, Bendahmane A, Aury JM, Batley J, Le Paslier MC, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet 2019; 51:1411-1422. [PMID: 31477930 DOI: 10.1038/s41588-019-0480-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
Collapse
Affiliation(s)
- Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Krishna K Gali
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robert A Syme
- Centre for Crop and Disease Management, Curtin University, Bentley, Western Australia, Australia
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Anthony Klein
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Aurélie Bérard
- Etude du Polymorphisme des Génomes Végétaux, INRA, Université Paris-Saclay, Evry, France
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Cyril Fournier
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Leo d'Agata
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Wahiba Berrabah
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Helena Toegelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Zbyněk Milec
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - HueyTyng Lee
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Ayité Kougbeadjo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Morgane Térézol
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Huneau
- UMR 1095 Génétique, Diversité, Ecophysiologie des Céréales, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chala J Turo
- Centre for Crop and Disease Management, School of Molecular and Life Science, Curtin University, Bentley, Western Australia, Australia
| | | | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Matthieu Falque
- GQE-Le Moulon, INRA, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rebecca McGee
- USDA Agricultural Research Service, Pullman, WA, USA
| | - Bunyamin Tar'an
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, University of Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | | | - Noel Ellis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas D Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Jérome Salse
- UMR 1095 Génétique, Diversité, Ecophysiologie des Céréales, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Judith Lichtenzveig
- School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
5
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
6
|
Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics 2014; 15:126. [PMID: 24521263 PMCID: PMC3925251 DOI: 10.1186/1471-2164-15-126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/05/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. RESULTS We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs.We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. CONCLUSIONS Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
Collapse
Affiliation(s)
- Jorge Duarte
- Biogemma, route d’Ennezat, CS 90126, Chappes 63720, France
| | | | - Alain Baranger
- INRA UMR 1349 IGEPP, BP35327, Le Rheu Cedex 35653, France
| | - Grégoire Aubert
- INRA UMR 1347 Agroécologie, Bat. Mendel, 17 rue Sully BP 86510, Dijon 21065, France
| | - Judith Burstin
- INRA UMR 1347 Agroécologie, Bat. Mendel, 17 rue Sully BP 86510, Dijon 21065, France
| | - Laurent Cornet
- Biogemma, route d’Ennezat, CS 90126, Chappes 63720, France
| | - Clément Lavaud
- INRA UMR 1349 IGEPP, BP35327, Le Rheu Cedex 35653, France
| | | | - Jean-Pierre Martinant
- Limagrain Europe, centre de recherche route d’Ennezat, CS 3911, Chappes 63720, France
| | | | | | - Gilles Boutet
- INRA UMR 1349 IGEPP, BP35327, Le Rheu Cedex 35653, France
| |
Collapse
|
7
|
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 2012; 29:3601-11. [PMID: 22723303 PMCID: PMC3859920 DOI: 10.1093/molbev/mss168] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%-28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%-22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types.
Collapse
Affiliation(s)
- Mathieu Piednoël
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| | - Andre J. Aberer
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Gerald M. Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Jiri Macas
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Petr Novak
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Heidrun Gundlach
- Institute for Bioinformatics and System Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva M. Temsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
8
|
|
9
|
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 2010; 11:378. [PMID: 20633259 PMCID: PMC2912890 DOI: 10.1186/1471-2105-11-378] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/15/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization. RESULTS We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max, differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR, were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families. CONCLUSIONS Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.
Collapse
Affiliation(s)
- Petr Novák
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| | - Pavel Neumann
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| |
Collapse
|
10
|
Navajas-Pérez R, Paterson AH. Patterns of tandem repetition in plant whole genome assemblies. Mol Genet Genomics 2009; 281:579-90. [PMID: 19242726 DOI: 10.1007/s00438-009-0433-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/03/2009] [Indexed: 12/22/2022]
Abstract
Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9-30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses.
Collapse
|
11
|
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM. Evolution of genome size and complexity in Pinus. PLoS One 2009; 4:e4332. [PMID: 19194510 PMCID: PMC2633040 DOI: 10.1371/journal.pone.0004332] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/24/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.
Collapse
Affiliation(s)
- Alison M. Morse
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Daniel G. Peterson
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - M. Nurul Islam-Faridi
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Katherine E. Smith
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Zenaida Magbanua
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Saul A. Garcia
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas L. Kubisiak
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Henry V. Amerson
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John E. Carlson
- School of Forest Resources, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - C. Dana Nelson
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - John M. Davis
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
12
|
BASSI PAOLA. QUANTITATIVE VARIATIONS OF NUCLEAR DNA DURING PLANT DEVELOPMENT: A CRITICAL ANALYSIS. Biol Rev Camb Philos Soc 2008. [DOI: 10.1111/j.1469-185x.1990.tb01424.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Samatadze TE, Muravenko OV, Bolsheva NL, Amosova AV, Gostimsky SA, Zelenin AV. Investigation of Chromosomes in Varieties and Translocation Lines of Pea Pisum sativum L. by FISH, Ag-NOR, and Differential DAPI Staining. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-006-0010-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wong CE, Li Y, Whitty BR, Díaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. PLANT MOLECULAR BIOLOGY 2005; 58:561-74. [PMID: 16021339 DOI: 10.1007/s11103-005-6163-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 04/22/2005] [Indexed: 05/03/2023]
Abstract
Thellungiella salsuginea (also known as T. halophila) is a close relative of Arabidopsis that is very tolerant of drought, freezing, and salinity and may be an appropriate model to identify the molecular mechanisms underlying abiotic stress tolerance in plants. We produced 6578 ESTs, which represented 3628 unique genes (unigenes), from cDNA libraries of cold-, drought-, and salinity-stressed plants from the Yukon ecotype of Thellungiella. Among the unigenes, 94.1% encoded products that were most similar in amino acid sequence to Arabidopsis and 1.5% had no match with a member of the family Brassicaceae. Unigenes from the cold library were more similar to Arabidopsis sequences than either drought- or salinity-induced sequences, indicating that latter responses may be more divergent between Thellungiella and Arabidopsis. Analysis of gene ontology using the best matched Arabidopsis locus showed that the Thellungiella unigenes represented all biological processes and all cellular components, with the highest number of sequences attributed to the chloroplast and mitochondria. Only 140 of the unigenes were found in all three abiotic stress cDNA libraries. Of these common unigenes, 70% have no known function, which demonstrates that Thellungiella can be a rich resource of genetic information about environmental responses. Some of the ESTs in this collection have low sequence similarity with those in Genbank suggesting that they may encode functions that may contribute to Thellungiella's high degree of stress tolerance when compared with Arabidopsis. Moreover, Thellungiella is a closer relative of agriculturally important Brassica spp. than Arabidopsis, which may prove valuable in transferring information to crop improvement programs.
Collapse
Affiliation(s)
- C E Wong
- Department of Biology, University of Waterloo, N2L 3G1, Waterloo ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record.
Collapse
Affiliation(s)
- Wolf-Ekkehard Lonnig
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
| | | |
Collapse
|
16
|
Neumann P, Nouzová M, Macas J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 2001. [DOI: 10.1139/g01-056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of pea DNA sequences representing the most abundant genomic repeats was obtained by combining several approaches. Dispersed repeats were isolated by screening a short-insert genomic library using genomic DNA as a probe. Thirty-two clones ranging from 149 to 2961 bp in size and from 1000 to 39 000/1C in their copy number were sequenced and further characterized. Fourteen clones were identified as retrotransposon-like sequences, based on their homologies to known elements. Fluorescence in situ hybridization using clones of reverse transcriptase and integrase coding sequences as probes revealed that corresponding retroelements were scattered along all pea chromosomes. Two novel families of tandem repeats, named PisTR-A and PisTR-B, were isolated by screening a genomic DNA library with Cot-1 DNA and by employing genomic self-priming PCR, respectively. PisTR-A repeats are 211212 bp long, their abundance is 2 × 104 copies/1C, and they are partially clustered in a secondary constriction of one chromosome pair with the rest of their copies dispersed on all chromosomes. PisTR-B sequences are of similar abundance (104 copies/1C) but differ from the "A" family in their monomer length (50 bp), high A/T content, and chromosomal localization in a limited number of discrete bands. These bands are located mainly in (sub)telomeric and pericentromeric regions, and their patterns, together with chromosome morphology, allow discrimination of all chromosome types within the pea karyotype. Whereas both tandem repeat families are mostly specific to the genus Pisum, many of the dispersed repeats were detected in other legume species, mainly those in the genus Vicia.Key words: repetitive DNA, plant genome, retroelements, satellite DNA, Pisum sativum.
Collapse
|
17
|
Joyner KL, Wang XR, Johnston JS, Price HJ, Williams CG. DNA content for Asian pines parallels New World relatives. ACTA ACUST UNITED AC 2001. [DOI: 10.1139/b00-151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This hypothesis is based on an observed correlation between DNA content and thermal regime for fish, zooplankton, salamanders, and some flowering plants. The Asian pine results provided no support for the latitudinal hypothesis; Asian tropical pine species did not have smaller genomes than their temperate or boreal relatives. DNA content of haploid megagametophyte tissue varied from 21.85 pg/C for hard pine Pinus densiflora Sieb. & Zucc. to 29.59 pg/C for soft pine Pinus bungeana Zucc. Pinus merkusii Jung. & De Vriese (29.63 pg/C) was the exceptional hard pine, with a genome size larger than many soft pines. The mean DNA content of Asian soft pines exceeded Asian hard pines (Δ 3.22 pg/C), a parallel to the previously reported trends for New World pines. No continental effect was detected. Based on 46 pines species sampled in centers of species diversity in Asian and the New World, soft pines had mean DNA content which exceeded hard pines by 4.97 pg/C.Key words: gymnosperms, conifers, laser flow cytometry, megagametophytes, C values, phylogeny.
Collapse
|
18
|
Barakat A, Han DT, Benslimane A, Rode A, Bernardi G. The gene distribution in the genomes of pea, tomato and date palm. FEBS Lett 1999; 463:139-42. [PMID: 10601654 DOI: 10.1016/s0014-5793(99)01587-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vast majority of genes of maize, rice, barley and wheat are contained in long gene-rich regions (collectively called the 'gene space') separated by long gene-empty regions. The gene space covers a narrow, 0.8-1.6%, GC range, possibly because of the presence of abundant transposons. Here we report that the gene space is not an exclusive property of Gramineae, because it also exists in the large genome of pea (5000 Mb). Moreover, the gene space is not just dependent upon genome size, since a gene space is found in rice (415 Mb), but not in Arabidopsis (120 Mb), nor in two other plants investigated in the present work, date palm (250 Mb) and tomato (1000 Mb).
Collapse
Affiliation(s)
- A Barakat
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2, Place Jusssieu, F-75005, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Peterson DG, Pearson WR, Stack SM. Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 1998. [DOI: 10.1139/g98-025] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A detailed in vitro study of the kinetics of DNA renaturation, i.e., a C0t analysis, can be used to determine the size of a genome, the relative proportions of single-copy and repetitive sequences, and the complexity of genome components. Despite the dual importance of tomato (Lycopersicon esculentum) as a model for basic plant research and as a crop plant, to the best of our knowledge a C0t analysis has never been published for this species. This is probably due to difficulties associated with isolating sufficient quantities of polyphenol-free nuclear DNA from tomato. Recently we developed a technique for isolating milligram quantities of purified DNA from tomato nuclei, and we used DNA isolated in this manner to prepare a C0t curve for the tomato genome. Analysis of the C0t data indicates that the tomato genome (1C) consists of approximately 0.86 pg of DNA. In agreement with earlier molecular studies, the C0t analysis suggests that most (~73%) of the tomato genome is composed of single-copy sequences. Since 77% of the DNA in tomato chromosomes is found in constitutive heterochromatin, many of the single-copy sequences must reside in heterochromatin, an unexpected arrangement, considering that the constitutive heterochromatin of most species is predominantly repetitive DNA. To determine the distribution of repetitive and single-copy DNA along tomato pachytene chromosomes, we used hydroxyapatite-purified C0t fractions as probes for fluorescence in situ hybridization (FISH). Our FISH results indicate that highly repetitive DNA hybridizes almost exclusively with heterochromatin. While single-copy DNA comprises most of the DNA in euchromatin, heterochromatin contains the majority of single-copy DNA sequences, an observation consistent with our C0t data and previous cytological studies.Key words: tomato, Lycopersicon esculentum, genome size, heterochromatin, euchromatin, DNA reassociation, fluorescence in situ hybridization, FISH, C0t.
Collapse
|
20
|
Abstract
The discoveries, advancements and continuing controversies in the field of molecular evolution are reviewed. Topics summarized are (1) the evolution of the genetic code, (2) gene evolution including the demonstration of homology, estimation of sequence divergence, phylogenetic trees, the molecular clock and the origin of genes and gene families by various genetic mechanisms, and (3) eukaryotic genome evolution, including the highly repeated satellite sequences, the interspersed and potentially mobile repeated sequences and the unique sequence fraction of the genome.
Collapse
Affiliation(s)
- R J MacIntyre
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703
| |
Collapse
|
21
|
Roche D, Temple SJ, Sengupta-Gopalan C. Two classes of differentially regulated glutamine synthetase genes are expressed in the soybean nodule: a nodule-specific class and a constitutively expressed class. PLANT MOLECULAR BIOLOGY 1993; 22:971-83. [PMID: 8104530 DOI: 10.1007/bf00028970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have characterized two sets of cDNA clones representing the glutamine synthetase (GS) mRNA in soybean nodules. Using the 3'-untranslated regions of a representative member of each set, as gene member(s) specific probes, we have shown that one set of the GS genes are expressed in a nodule-specific manner, while the other set is expressed in other tissues, besides the nodules. The nodule-specific GS genes are expressed in a developmentally regulated manner in the nodules, independent of the onset of nitrogen fixation. The other class of GS genes is expressed constitutively in all tissues tested, but its expression level is dramatically enhanced in nodules following onset of N2 fixation. The latter set of genes is also expressed in cotyledons of germinating seedlings in a developmentally regulated manner. Analysis of hybrid select translation products and genomic Southern blots suggests that multiple gene members in each class are expressed in the nodules.
Collapse
Affiliation(s)
- D Roche
- Dept. of Agronomy & Horticulture, New Mexico State University, Las Cruces 88003
| | | | | |
Collapse
|
22
|
Temple SJ, Knight TJ, Unkefer PJ, Sengupta-Gopalan C. Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:315-25. [PMID: 8094885 DOI: 10.1007/bf00277128] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A glutamine synthetase (GS) cDNA isolated from an alfalfa cell culture cDNA library was found to represent a cytoplasmic GS. The full-length alfalfa GS1 coding sequence, in both sense and antisense orientation and under the transcriptional control of the cauliflower mosaic virus 35S promoter, was introduced into tobacco. Leaves of tobacco plants transformed with the sense construct contained greatly elevated levels of GS transcript and GS polypeptide which assembled into active enzyme. Leaves of the plants transformed with the antisense GS1 construct showed a significant decrease in the level of both GS1 and GS2 polypeptides and GS activity, but did not show any significant decrease in the level of endogenous GS mRNA. We have proposed that antisense inhibition using a heterologous antisense GS RNA occurs at the level of translation. Our results also suggest that the post-translational assembly of GS subunits into a holoenzyme requires an additional factor(s) and is under regulatory control.
Collapse
Affiliation(s)
- S J Temple
- Plant Genetic Engineering Labs/Department of Agronomy and Horticulture, New Mexico State University, Las Cruces 88003
| | | | | | | |
Collapse
|
23
|
Sutton DW, Havstad PK, Kemp JD. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res 1992; 1:228-36. [PMID: 1301214 DOI: 10.1007/bf02524753] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 1974 bp synthetic gene was constructed from chemically synthesized oligonucleotides in order to improve transgenic protein expression of the cryIIIA gene from Bacillus thuringiensis var. tenebrionis in transgenic tobacco. The crystal toxin genes (cry) from B. thuringiensis are difficult to express in plants even when under the control of efficient plant regulatory sequences. We identified and eliminated five classes of sequence found throughout the cryIIIA gene that mimic eukaryotic processing signals and which may be responsible for the low levels of transcription and translation. Furthermore, the GC content of the gene was raised from 36% to 49% and the codon usage was changed to be more plant-like. When the synthetic gene was placed behind the cauliflower mosaic virus 35S promoter and the alfalfa mosaic virus translational enhancer, up to 0.6% of the total protein in transgenic tobacco plants was cryIIIA as measured from immunoblot analysis. Bioassay data using potato beetle larvae confirmed this estimate.
Collapse
MESH Headings
- Animals
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis Toxins
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/toxicity
- Bacterial Toxins/genetics
- Base Sequence
- Biological Assay
- Blotting, Northern
- Cloning, Molecular/methods
- Coleoptera/drug effects
- Endotoxins
- Escherichia coli/genetics
- Genes, Bacterial
- Genes, Synthetic
- Hemolysin Proteins
- Larva
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plants, Genetically Modified
- Plants, Toxic
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Restriction Mapping
- Nicotiana/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- D W Sutton
- Plant Genetic Engineering Laboratory, New Mexico State University, Las Cruces 88003
| | | | | |
Collapse
|
24
|
Hershey HP, Stoner TD. Isolation and characterization of cDNA clones for RNA species induced by substituted benzenesulfonamides in corn. PLANT MOLECULAR BIOLOGY 1991; 17:679-90. [PMID: 1912492 DOI: 10.1007/bf00037053] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A search of compounds capable of inducing specific gene expression in plants without affecting growth and development led to the examination of changes in the pattern of gene expression in corn after treatment with substituted benzenesulfonamide herbicide safeners. Following hydroponic treatment of corn with the safener N-(aminocarbonyl)-2-chlorobenzenesulfonamide (2-CBSU), the specific induction of new translatable mRNA species was observed. Replicate copies of a cDNA library made using RNA from 2-CBSU-treated corn roots were differentially screened with cDNA probes made from either the same mRNA fraction used for library construction or mRNA isolated from roots treated with 2-chlorobenzenesulfonamide (2-CBSA), an inactive analog of the safener. Colonies showing hybridization only with the probe made using mRNA from 2-CBSU-treated roots were further characterized to assess the specificity of the induction and decay of the corresponding induced RNA species. RNA blot analyses showed two clones, designated In2-1 and In2-2, contained plasmids that hybridized to RNAs that were induced from an undetectable background in corn roots within 30 minutes after treatment with 2-CBSU. Leaf and meristem tissues showed similar inductions of the In2-1 and In2-2 RNA species after a delay of several hours. In addition, both RNA species were induced in corn by foliar application of 2-CBSU. In contrast, neither RNA species was induced following stress treatments of plants. These results indicate a substituted benzenesulfonamide safener might be used with the promoters from the In2-1 and In2-2 genes to develop a new inducible gene expression system for plants.
Collapse
Affiliation(s)
- H P Hershey
- Agricultural Products Department, E.I. du Pont de Nemours and Co., Wilmington, DE 19880-0402
| | | |
Collapse
|
25
|
Cotton JL, Ross CW, Byrne DH, Colbert JT. Down-regulation of phytochrome mRNA abundance by red light and benzyladenine in etiolated cucumber cotyledons. PLANT MOLECULAR BIOLOGY 1990; 14:707-14. [PMID: 2102849 DOI: 10.1007/bf00016503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Northern blot analysis revealed that a single 4.2 kb phytochrome mRNA species was detectable in cotyledons excised from five-day-old etiolated cucumber seedlings. Intact etiolated five-day-old cucumber seedlings were given a red light or benzyladenine treatment, and cotyledons were harvested at various times following treatment. The abundance of phytochrome mRNA in the cotyledons was quantitated using 32P-labeled RNA probes and slot blot analysis. By 2 h after irradiation the phytochrome mRNA level was reduced to 40% of the initial abundance and reaccumulation began by 3 h after irradiation. Reaccumulation of phytochrome mRNA to the time-zero dark control level was achieved by 10 h after treatment. A decrease in phytochrome mRNA abundance was evident by 2 h after benzyladenine treatment, and a maximal reduction to 45% of the time-zero dark control was attained by 4 h after treatment. No recovery of the phytochrome mRNA level was evident by 8 h after benzyladenine treatment. The abundance of actin mRNA was unaffected by benzyladenine treatment.
Collapse
Affiliation(s)
- J L Cotton
- Department of Biology, Colorado State University, Ft. Collins 80523
| | | | | | | |
Collapse
|
26
|
Derose RT, Ma DP, Kwon IS, Hasnain SE, Klassy RC, Hall TC. Characterization of the kafirin gene family from sorghum reveals extensive homology with zein from maize. PLANT MOLECULAR BIOLOGY 1989; 12:245-256. [PMID: 24272860 DOI: 10.1007/bf00043202] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/1988] [Accepted: 10/13/1988] [Indexed: 06/02/2023]
Abstract
Electrophoretic analysis of translation products of polyadenylated RNA isolated from mid-maturation sorghum seed in the presence of [(35)S]met, [(3)H]leu, or [(3)H]val revealed two major proteins of kDa and 21 kDa. These products were not detected when [(3)H]lys was supplied as the radioactive substrate. Under similar electrophoretic conditions, kafirin (a major seed storage prolamin of sorghum), migrated as two bands of 22 kDa and 19 kDa. Sequence analysis of two cDNA clones (pSK8 and pSKR2) from sorghum seed mRNA revealed them to be highly homologous with each other and to the 22 kDa zeins from maize, suggesting that they represented kafirin cDNAs. Compared with pSKR2, pSK8 had an insertion of 24 nucleotides and a deletion of 24 nucleotides, so that the coding regions were nearly identical in length. The deduced amino acid sequence for these cDNA clones reveals that kafirin, like zein, is rich in glutamine and nonpolar amino acids, but contains no lysine. Both kafirin and zein have a 21 amino acid signal peptide exhibiting 80% homology and eight copies of a repetitive amino acid block in the C-terminal domain with the consensus: infI (supP) LL finP (supA) LN infQ (supP) LALANPAAYLQQQQ.The kafirin cDNAs were used as probes to screen a sorghum genomic library; one genomic clone (λGK.1) was sequenced and found to be very similar (97.8%) to the pSK8 cDNA clone. Clone λGK.1 contains features typical for a functional gene in that the intronless open reading frame encoding 268 amino acids is flanked at the 5' end by sequences corresponding to the CAAT and TATA promoter boxes (positioned at about -60 and -30 bp, respectively, from the transcriptional initiation site), and at the 3' end by a consensus polyadenylation signal. In common with zein genomic clones, kafirin clones contain a 15 basepair consensus sequence centered at postion -320 relative to the transcriptional initiation site. Under similar hybridization conditions, genomic reconstruction analysis using an oligonucleotide probe indicated the presence of less than 20 copies of kafirin per haploid sorghum genome compared with approximatley 140 copies of zein per haploid maize genome.
Collapse
Affiliation(s)
- R T Derose
- Department of Biology, Texas A&M University, 77843-3258, College Station, TX, USA
| | | | | | | | | | | |
Collapse
|
27
|
Roy P, Bhattacharyya N, Biswas BB. Isolation, characterization and sequencing of a novel repetitive DNA from the mung bean Vigna radiata. Gene 1988; 73:57-66. [PMID: 3243436 DOI: 10.1016/0378-1119(88)90312-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A family of highly reiterated, small (approx. 300 bp) sequences has been identified in DNA of the mung bean Vigna radiata. The members are extensively interspersed throughout the chromosomes with some clustering. They also occur extrachromosomally. There is no tissue-specificity to the repeat family but it is highly species-specific. The repetitive DNA hybridizes to total RNA as well as to polyadenylated RNA isolated from germinated mung beans. It has analogy with the human AluI family in the mode of isolation, size, genomic distribution, copy number and transcribability though they do not share any sequence homology. A repetitive DNA clone was selected from a shotgun genomic library of mung bean DNA in pBR322. The average copy number of the cloned repeat is estimated to be 8 x 10(4) per haploid genome, and thus constitutes approx. 5% of the total mung bean genome. The genomic organization and transcription of the cloned repeat is reported. Sequencing of the cloned repetitive DNA reveals the presence of the number of direct and inverted repeats and some short palindromic sequences.
Collapse
Affiliation(s)
- P Roy
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
28
|
Tomato genome is comprised largely of fast-evolving, low copy-number sequences. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00339589] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Lissemore JL, Colbert JT, Quail PH. Cloning of cDNA for phytochrome from etiolated Cucurbita and coordinate photoregulation of the abundance of two distinct phytochrome transcripts. PLANT MOLECULAR BIOLOGY 1987; 8:485-496. [PMID: 24301311 DOI: 10.1007/bf00017994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/1986] [Revised: 02/16/1987] [Accepted: 02/20/1987] [Indexed: 06/02/2023]
Abstract
We have isolated several cDNA clones for phytochrome from a dicot, Cucurbita pepo L. cv. Black Beauty (zucchini), and have used them to study the regulation of Cucurbita phytochrome mRNA levels. A cDNA library was constructed from poly(A)(+) RNA isolated from etiolated Cucurbita hypocotyl hooks and enriched for phytochrome mRNA by size fractionation. This library was screened with a (32)P-labeled fragment isolated from an Avena phytochrome cDNA clone. Several putative phytochrome clones were isolated and mapped by restriction endonuclease analysis. On the basis of this analysis there is no evidence for the expression of multiple phytochrome genes in Cucurbita. Recent sequence analysis has confirmed that the largest of these clones, pFMD1 (∼3.6 kb), does indeed encode phytochrome and that it contains the entire amino acid coding sequence for Cucurbita phytochrome (33). RNA blot analysis has revealed that two polyadenylated phytochrome transcripts (∼5.6 kb and ∼4.2 kb) are present in both cotyledons and hypocotyl hooks of Cucurbita. In etiolated Cucurbita seedlings given a saturating pulse of red light, the abundance of both transcripts coordinately declines to 50-60% of the dark levels within 3 h and reaccumulates to dark levels within 24 h. Reversal of induction of this response by a far-red light pulse immediately following red light treatment is not observed, which is in contrast to the far-red reversibility of the red light promoted decrease in phytochrome mRNA abundance observed in Avena (6). Etiolated seedlings transferred to continuous white light also show a coordinate decrease in the levels of the two RNAs to ∼40% of the dark levels within 3 h. The magnitude of the light-induced decline in phytochrome mRNA abundance in Cucurbita is substantially less than the decrease previously reported for Avena (6).
Collapse
Affiliation(s)
- J L Lissemore
- Department of Botany, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | | | | |
Collapse
|
30
|
Hondred D, Wadle DM, Titus DE, Becker WM. Light-stimulated accumulation of the peroxisomal enzymes hydroxypyruvate reductase and serine:glyoxylate aminotransferase and their translatable mRNAs in cotyledons of cucumber seedlings. PLANT MOLECULAR BIOLOGY 1987; 9:259-275. [PMID: 24276974 DOI: 10.1007/bf00166462] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/1987] [Accepted: 05/21/1987] [Indexed: 06/02/2023]
Abstract
The development of peroxisomal enzymes in cotyledons of cucumber seedlings is strongly dependent on light. In light-grown seedlings, activities of two peroxisomal enzymes, hydroxypyruvate reductase (HPR) and serine: glyoxylate aminotransferase (SGAT), were barely detectable until three days postimbibition, after which time both activities increased rapidly and linearly for at least three days. In the dark, the activities of these enzymes increased slightly over the same time period, but only to about 5% to 10% of 7-day light-induced levels. When 51/2-day dark-grown seedlings were transferred into white light, activities of HPR and SGAT began to increase after approximately 8 h. HPR protein was shown by an immunoprecipitation assay to increase concurrently with enzymatic activity in both light- and dark-grown cotyledons. Immunoblotting results suggested that the amounts of SGAT-A and SGAT-B, the two subunits of SGAT, also developed along with SGAT activity. The relative levels of translatable mRNAs encoding HPR, SGAT-A, and SGAT-B were also light-dependent, and increased with a developmental pattern similar to enzyme activity and protein levels in light- and dark-grown cotyledons. In 51/2-day dark-grown cotyledons that were transferred to the light, translatable mRNAs for SGAT-A and SGAT-B began to increase within 1 h of illumination and continued of increase rapidly and linearly for the next 24 h in the light to a new steady-state level that was 45 times that of dark controls. Translatable HPR mRNA exhibited a biphasic pattern of accumulation, with a three-fold increase during the first 6 h of illumination, followed by an additional six-fold increase between 8 and 24 h. The accumulation of translationally active mRNA for both enzymes preceded the accumulation of the corresponding protein and enzyme activity by about 8 h. Our data suggest that the rise in enzyme activity depends on an increase in translatable mRNA for these enzymes and is regulated at a pretranslational level, most likely involving transcription of new mRNA.
Collapse
Affiliation(s)
- D Hondred
- Department of Botany, University of Wisconsin, 53706, Madison, WI, USA
| | | | | | | |
Collapse
|
31
|
Import of proteins into chloroplasts. Membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66943-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Murray MG. Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem 1986; 158:165-70. [PMID: 2432801 DOI: 10.1016/0003-2697(86)90605-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An improved method for mapping RNA transcript boundaries by the nuclease protection technique is presented. This method exploits the large (greater than 20 degrees C) difference in the thermal stability of RNA:DNA and DNA:DNA duplexes in concentrated chaotropic salt solutions. At 45 degrees C in 3.0 M sodium trichloroacetate RNA:DNA hybridization is very efficient but DNA:DNA duplexes remain completely denatured. For many applications, this solvent system can eliminate the need to prepare probes that are free of competing or irrelevant DNA molecules. Fifty- to 100-fold more RNA:DNA hybridization is observed when reassociation is performed in 3.0 M sodium trichloroacetate than in solutions containing high concentrations of formamide. A comparison of the use of S1 nuclease or mung bean nuclease suggests that mung bean nuclease can produce more precise and less ambiguous nuclease protection patterns.
Collapse
|
33
|
|
34
|
Sengupta-Gopalan C, Pitas JW. Expression of nodule-specific glutamine synthetase genes during nodule development in soybeans. PLANT MOLECULAR BIOLOGY 1986; 7:189-199. [PMID: 24302304 DOI: 10.1007/bf00021330] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/1985] [Revised: 06/02/1986] [Accepted: 06/10/1986] [Indexed: 06/02/2023]
Abstract
A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix(-) nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix(-) nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.
Collapse
Affiliation(s)
- C Sengupta-Gopalan
- Plant Genetics Engineering Laboratory, Crop and Soil Science Department, New Mexico State University, Box 3GL, 88003, Las Cruces, NM, U.S.A
| | | |
Collapse
|
35
|
Gold JR, Price HJ. Genome size variation among north american minnows (Cyprinidae). I. Distribution of the variation in five species. Heredity (Edinb) 1985; 54 ( Pt 3):297-305. [PMID: 4019217 DOI: 10.1038/hdy.1985.40] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome sizes (nuclear DNA contents) were examined spectrophotometrically from ten individuals of each of five species of North American cyprinid fishes (minnows). The distributions of DNA values both within and between the five species were essentially continuous and normal. Differences between individuals within populations were significant and contributed to approximately 16 per cent of the total variation. Variation between individuals within species ranged from 4.7-13.5 per cent and averaged ca. 7.4 per cent. Variation between species ranged from 0-9.5 per cent and the average difference between any species pair was ca. 4.6 per cent. Statistical analyses showed that the methodology used was sufficient to detect significant differences in genome size as small as 2-3 per cent. Consideration of these data lead to the following tentative conclusions: (i) changes in genome size in cyprinids appear small in amount, frequent in occurrence, to involve both gains and losses of DNA, and to be cumulative and independent in effect; (ii) differences within and between cyprinid taxa are likely the result of accumulations of small changes in DNA quantity; and (iii) the primary focus of quantitative DNA variation in cyprinids is between individuals within populations. The extent of DNA quantity variation which occurs within species would appear to preclude any direct relationship between genome size variation and many of the organismal parameters (including speciation) which differentiate the five species. In short, the data suggest that a significant fraction of the cyprinid genome, perhaps more than 10 per cent, is free to vary quantitatively without phenotypic constraint or biological consequence. This fraction is considerably larger than that theoretically needed for the structural gene component.
Collapse
|
36
|
Colbert JT, Hershey HP, Quail PH. Phytochrome regulation of phytochrome mRNA abundance. PLANT MOLECULAR BIOLOGY 1985; 5:91-101. [PMID: 24306568 DOI: 10.1007/bf00020091] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1985] [Revised: 05/30/1985] [Accepted: 06/11/1985] [Indexed: 06/02/2023]
Abstract
Pure phytochrome RNA sequence synthesized in an SP6-derived in vitro transcription system has been used as a standard to quantitate phytochrome mRNA abundance in Avena seedlings using a filter hybridization assay. In 4-day-old etiolated Avena seedlings phytochrome mRNA represents ∼0.1% of the total poly(A)(+) RNA. Irradiation of such seedlings with a saturating red-light pulse or continuous white light induces a decline in this mRNA that is detectable within 30 min and results in a 50% reduction by ∼60 min and >90% reduction within 5 h. The effect of the red-light pulse is reversed, approximately to the level of the far-red control, by an immediately subsequent far-red pulse. In seedlings maintained in extended darkness after the red-light pulse, the initial rapid decline in phytochrome mRNA level is followed by a slower reaccumulation such that 50-60% of the initial abundance is reached by 48 h. White-light grown seedlings transferred to darkness exhibit a similar accumulation of phytochrome mRNA that is accelerated by removal of residual Pfr with a far-red light pulse at the start of the dark period. The data establish that previously reported phytochrome-regulated changes in translatable phytochrome mRNA levels result from changes in the physical abundance of this mRNA rather than from altered translatability.
Collapse
Affiliation(s)
- J T Colbert
- Department of Botany, University of Wisconsin-Madison, 53706, Madison, WI, U.S.A
| | | | | |
Collapse
|
37
|
Okamuro JK, Goldberg RB. Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00383009] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Murray MG, Kennard WC, Drong RF, Slightom JL. Use of a recombination-deficient phage lambda system to construct wheat genomic libraries. Gene X 1984; 30:237-40. [PMID: 6096216 DOI: 10.1016/0378-1119(84)90126-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The poor cloning efficiency of wheat (Triticum aestivum cv. Yamhill) DNA in conventional cloning vectors has previously prevented the preparation of complete genomic libraries. We show here that while wheat DNA does not clone efficiently using the vector Ch4A, it can be cloned efficiently using Ch32. Ch32 clones are red- gam+ and therefore can be propagated on recombination-deficient hosts. These results suggest that instability of wheat sequences in conventional lambda vector systems has frustrated previous attempts to prepare libraries.
Collapse
|
39
|
Hoffman LM, Sengupta-Gopalan C, Paaren HE. Structure of soybean Kunitz trypsin inhibitor mRNA determined from cDNA by using oligodeoxynucleotide primers. PLANT MOLECULAR BIOLOGY 1984; 3:111-117. [PMID: 24310306 DOI: 10.1007/bf00040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/1983] [Revised: 12/23/1984] [Accepted: 02/15/1984] [Indexed: 06/02/2023]
Abstract
Oligodeoxynucleotides complementary to the deduced mRNA sequence of soybean Kunitz trypsin inhibitor (KTI) were used to prime the synthesis of cDNA from soybean cotyledon total poly(A) RNA. The primed cDNA was used to select clones from a Glycine max cotyledon cDNA library. Two out of twelve hybridizing clones were shown to contain KTI cDNA. The nucleotide sequence of one clone, pSTI 9-2, was determined and it was found to encompass the complete protein coding region of KTI excet for three C-terminal residues. Trypsin inhibitor is synthesized with a 25 amino acid hydrophobic N-terminal sequence presumed to be a signal peptide. The mature polypeptide encoded by pSTI 9-2 agrees with the published amino acid composition of KTI, but contains two discrepancies at the peptide sequence level.
Collapse
Affiliation(s)
- L M Hoffman
- Agrigenetics Advanced Research Division, 5649 East Buckeye Road, 53716, Madison, WI, U.S.A
| | | | | |
Collapse
|
40
|
Bachvarov DR, Ivanov IG, Markov GG. Does the concentration of DNA (Co) and the time of incubation (t) as parameters of Cot influence the thermal stability of the DNA duplexes? Mol Biol Rep 1984; 9:223-6. [PMID: 6708947 DOI: 10.1007/bf00775351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been shown in a previous paper (8) that the prime product of reassociation of related DNA sequences under open experimental conditions are mismatched duplexes which undergo 'maturation' upon further incubation. Due to this feature, the Tm value of the duplexes of a large number of DNAs is strongly dependent on the Cot value. Here we present data showing that the Tm of the duplexes of such type of DNAs depends also on the concentration of DNA in the range of one and the same Cot value. The significance of this finding in studying the taxonomic relationship by DNA-DNA hybridisation is discussed.
Collapse
|
41
|
Thompson WF, Everett M, Polans NO, Jorgensen RA, Palmer JD. Phytochrome control of RNA levels in developing pea and mung-bean leaves. PLANTA 1983; 158:487-500. [PMID: 24264922 DOI: 10.1007/bf00397240] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1982] [Accepted: 04/11/1983] [Indexed: 06/02/2023]
Abstract
We have examined phytochrome effects on the abundance of transcripts from several nuclear and chloroplast genes in buds of dark-grown pea seedlings and primary leaves of dark-grown mung-bean seedlings. Probes for nuclear-coded RNAs were selected from a library of cDNA clones and included those corresponding to the small subunit (SS) of ribulosebisphosphate carboxylase and a chlorophyll a/b binding protein (AB). Transcripts from chloroplast genes for RuBP carboxylase large subunit (LS) and a 32,000-dalton photosystem II polypeptide (PII) were assayed with cloned fragments of the chloroplast genome. In addition, we present data on transcripts from a number of other nuclear genes of unknown function, several of which change in abundance during light-induced development. Transcript levels were measured as a proportion of total RNA by a dot blot assay in which RNA from different tissues or stages is fixed to nitrocellulose and hybridized with (32)P-labeled probes prepared from cloned DNAs. Several patterns of induction can be seen. For example, although both SS and AB RNAs show positive, red/far-red reversible responses in both pea and mung bean, in pea buds the induction ratio for SS RNA is much higher than that for AB RNA, while just the reverse is true for mung-bean leaves. In addition, treatment with lowfluence red light produces full induction of the pea AB RNA, while SS RNA in the same tissue does not reach a maximum steady-state level until after about 24 h of supplementary high-intensity white light. In pea buds, chloroplast genes (LS, PII) also show clear responses to phytochrome, as measured by the steady-state levels of their RNA products. Chloroplast DNA levels (as a fraction of the total cellular DNA) show the same response pattern, which may indicate that in peas many of the light effects we see are related to a general stimulation of chloroplast development. In mung beans, the levels of plastid DNA and RNA are already quite high in the leaves of 7-d dark-grown seedlings, and light effects are much less pronounced. The results are consistent with the notion that chloroplast development is arrested at a later stage in dark-grown mung-bean leaves than in etiolated pea buds.
Collapse
Affiliation(s)
- W F Thompson
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
42
|
Murray MG, Hoffman LM, Jarvis NP. Improved yield of full-length phaseolin cDNA clones by controlling premature anticomplementary DNA synthesis. PLANT MOLECULAR BIOLOGY 1983; 2:75-83. [PMID: 24318139 DOI: 10.1007/bf01595168] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/1982] [Revised: 04/27/1983] [Accepted: 04/29/1983] [Indexed: 06/02/2023]
Abstract
The manner in which the known enzymatic properties of reverse transcriptase may limit the length of double stranded cDNAs to be used in cloning was studied. Results here suggest that the well-documented ability of reverse transcriptase to synthesize anticomplementary DNA can, if unrecognized, seriously limit the final yield of full-length cDNA clones. Under conditions which permitted anticomplementary DNA synthesis during the synthesis of the first cDNA strand, no full-length cDNA clones for phaseolin, the principal storage proteins ofPhaseolus vulgaris, were detected among 19 phaseolin-positive cDNA clones. When anticomplementary DNA synthesis was inhibited with 4 mM sodium pyrophosphate, 5 full-length cDNA clones were identified among 45 phaseolin-positive clones. In both cases, the products of the first strand synthesis were C-tailed and the second strand synthesized by reverse transcriptase using oligo(dG) as a primer. The implications of anticomplementary synthesis in cloning methods involving the use of S1 nuclease are discussed. In addition, a rapid, one-step procedure for obtaining partial clones which equally represent the 5' and 3' ends of the RNA is presented.
Collapse
Affiliation(s)
- M G Murray
- Agrigenetics Advanced Research Laboratory, Agrigenetics Research Park, 5649 East Buckeye Road, 53716, Madison, WI, U.S.A
| | | | | |
Collapse
|
43
|
Murray MG, Thompson WF. Repeat sequence interspersion in coding DNA of peas does not reflect that in total pea DNA. PLANT MOLECULAR BIOLOGY 1982; 1:143-153. [PMID: 24317895 DOI: 10.1007/bf00024977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/1981] [Accepted: 08/13/1981] [Indexed: 06/02/2023]
Abstract
The pattern of sequence organization in the regions of the pea genome near sequences coding for mRNA differs significantly from that in total DNA. Interspersion of repeated and single copy sequences is so extensive that 85% of 1300 nucleotide-long fragments contain highly repetitive sequences (about 5000 copies per haploid genome). However, data presented here demonstrate that sequences which code for mRNA are enriched in the small fraction of fragments which do not contain these highly repetitive sequences. Thus, in contrast to the great majority of other sequences in the genome, most mRNA coding sequences are not located within 1300 nucleotides of highly repetitive elements. Moreover, our data indicate that those repeats (if any) which are closely associated with mRNA coding sequences belong to low copy number families characterized by an unusually low degree of sequence divergence.
Collapse
Affiliation(s)
- M G Murray
- Department of Plant Biology, Carnegie Institution of Washington, 94305, Stanford, CA, U.S.A
| | | |
Collapse
|
44
|
Palmer JD, Thompson WF. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 1982; 29:537-50. [PMID: 6288261 DOI: 10.1016/0092-8674(82)90170-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We examined the arrangement of sequences common to seven angiosperm chloroplast genomes. The chloroplast DNAs of spinach, petunia and cucumber are essentially colinear. They share with the corn chloroplast genome a large inversion of approximately 50 kb relative to the genomes of three legumes--mung bean, pea and broad bean. There is one additional rearrangement, a second, smaller inversion within the 50 kb inversion, which is specific to the corn genome. These two changes are the only detectable rearrangements that have occurred during the evolution of the species examined (corn, spinach, petunia, cucumber and mung bean) whose chloroplast genomes contain a large inverted repeat sequence of 22-25 kb. In contrast, we find extensive sequence rearrangements in comparing the pea and broad bean genomes, both of which have deleted one entire segment of the inverted repeat, and also in comparing each of these to the mung bean genome. Thus there is a relatively stable arrangement of sequences in those genomes with the inverted repeat and a much more dynamic arrangement in those that have lost it. We discuss several explanations for this correlation, including the possibility that the inverted repeat may play a direct role in maintaining a conserved arrangement of chloroplast DNA sequences.
Collapse
|
45
|
|
46
|
Belford HS, Thompson WF. Single copy DNA homologies in Atriplex. I. Cross reactivity estimates and the role of deletions in genome evolution. Heredity (Edinb) 1981. [DOI: 10.1038/hdy.1981.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|