1
|
Venincasa MJ, Randlett O, Sumathipala SH, Bindernagel R, Stark MJ, Yan Q, Sloan SA, Buglo E, Meng QC, Engert F, Züchner S, Kelz MB, Syed S, Dallman JE. Elevated preoptic brain activity in zebrafish glial glycine transporter mutants is linked to lethargy-like behaviors and delayed emergence from anesthesia. Sci Rep 2021; 11:3148. [PMID: 33542258 PMCID: PMC7862283 DOI: 10.1038/s41598-021-82342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Delayed emergence from anesthesia was previously reported in a case study of a child with Glycine Encephalopathy. To investigate the neural basis of this delayed emergence, we developed a zebrafish glial glycine transporter (glyt1 - / -) mutant model. We compared locomotor behaviors; dose-response curves for tricaine, ketamine, and 2,6-diisopropylphenol (propofol); time to emergence from these anesthetics; and time to emergence from propofol after craniotomy in glyt1-/- mutants and their siblings. To identify differentially active brain regions in glyt1-/- mutants, we used pERK immunohistochemistry as a proxy for brain-wide neuronal activity. We show that glyt1-/- mutants initiated normal bouts of movement less frequently indicating lethargy-like behaviors. Despite similar anesthesia dose-response curves, glyt1-/- mutants took over twice as long as their siblings to emerge from ketamine or propofol, mimicking findings from the human case study. Reducing glycine levels rescued timely emergence in glyt1-/- mutants, pointing to a causal role for elevated glycine. Brain-wide pERK staining showed elevated activity in hypnotic brain regions in glyt1-/- mutants under baseline conditions and a delay in sensorimotor integration during emergence from anesthesia. Our study links elevated activity in preoptic brain regions and reduced sensorimotor integration to lethargy-like behaviors and delayed emergence from propofol in glyt1-/- mutants.
Collapse
Affiliation(s)
- Michael J Venincasa
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sureni H Sumathipala
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Richard Bindernagel
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Matthew J Stark
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Qing Yan
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Steven A Sloan
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Elena Buglo
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, 33101, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Qing Cheng Meng
- Departments of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, 33101, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Max B Kelz
- Departments of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Julia E Dallman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
| |
Collapse
|
2
|
Freudenberg W, Andreesen JR. Purification and partial characterization of the glycine decarboxylase multienzyme complex from Eubacterium acidaminophilum. J Bacteriol 1989; 171:2209-15. [PMID: 2495273 PMCID: PMC209879 DOI: 10.1128/jb.171.4.2209-2215.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proteins P1, P2, and P4 of the glycine cleavage system have been purified from the anaerobic, glycine-utilizing bacterium Eubacterium acidaminophilum. By gel filtration, these proteins were determined to have Mrs of 225,000, 15,500, and 49,000, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protein P1 was determined to have two subunits with Mrs of 59,500 and 54,100, indicating an alpha 2 beta 2 tetramer, whereas the proteins P2 and P4 showed only single bands with estimated Mrs of 15,500 and 42,000, respectively. In reconstitution assays, proteins P1, P2, P4 and the previously reported lipoamide dehydrogenase (P3) had to be present to achieve glycine decarboxylase or synthase activity. All four glycine decarboxylase proteins exhibited highest activities when NADP+ was used as the electron acceptor or when NADPH was used as the electron donor in the glycine synthase reaction. The oxidation of glycine depended on the presence of tetrahydrofolate, dithioerythreitol, NAD(P)+, and pyridoxal phosphate. The latter was loosely bound to the purified protein P1, which was able to catalyze the glycine-bicarbonate exchange reaction only in combination with protein P2. Protein P2 could not be replaced by lipoic acid or lipoamide, although lipoic acid was determined to be a constituent (0.66 mol/mol of protein) of protein P2. Glycine synthase activity of the four isolated proteins and in crude extracts was low and reached only 12% of glycine decarboxylase activity. Antibodies raised against P1 and P2 showed cross-reactivity with crude extracts of Clostridium cylindrosporum.
Collapse
Affiliation(s)
- W Freudenberg
- Institut für Mikrobiologie der Universität, Göttingen, Federal Republic of Germany
| | | |
Collapse
|
3
|
Abstract
Dysfunctioning of human mitochondria is found in a rapidly increasing number of patients. The mitochondrial system for energy transduction is very vulnerable to damage by genetic and environmental factors. A primary mitochondrial disease is caused by a genetic defect in a mitochondrial enzyme or translocator. More than 60 mitochondrial enzyme deficiencies have been reported. Secondary mitochondrial defects are caused by lack of compounds to enable a proper mitochondrial function or by inhibition of that function. This may result from malnutrition, circulatory or hormonal disturbances, viral infection, poisoning, or an extramitochondrial error of metabolism. Once mitochondrial ATP synthesis decreases, secondary mitochondrial lesions may be generated further, due to changes in synthesis and degradation of mitochondrial phospholipids and proteins, to mitochondrial antibody formation following massive degradation, to accumulation of toxic products as excess acyl-CoA, to the depletion of Krebs cycle intermediates, and to the increase of free radical formation and lipid peroxidation.
Collapse
Affiliation(s)
- H R Scholte
- Department of Biochemistry I, Erasmus University Rotterdam, The Netherlands
| |
Collapse
|
4
|
Hayasaka K, Tada K, Fueki N, Nakamura Y, Nyhan WL, Schmidt K, Packman S, Seashore MR, Haan E, Danks DM. Nonketotic hyperglycinemia: analyses of glycine cleavage system in typical and atypical cases. J Pediatr 1987; 110:873-7. [PMID: 3585602 DOI: 10.1016/s0022-3476(87)80399-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular nature of the glycine cleavage system was investigated in eight patients with typical (neonatal) and two patients with atypical (late onset) nonketotic hyperglycinemia (NKH). The overall activity of the glycine cleavage system was found to be decreased in all of the liver and brain tissue studied, but it was undetectable or extremely low in typical NKH, whereas there was some residual activity in atypical NKH. Six patients with typical NKH had a specific defect in the P protein, and one a defect in the T protein; the activity of the T protein was defective in one patient with atypical NKH.
Collapse
|