2
|
Rossignol F, Duarte Moreno MS, Benoist JF, Boehm M, Bourrat E, Cano A, Chabrol B, Cosson C, Díaz JLD, D'Harlingue A, Dimmock D, Freeman AF, García MT, Garganta C, Goerge T, Halbach SS, de Laffolie J, Lam CT, Martin L, Martins E, Meinhardt A, Melki I, Ombrello AK, Pérez N, Quelhas D, Scott A, Slavotinek AM, Soares AR, Stein SL, Süßmuth K, Thies J, Ferreira CR, Schiff M. Quantitative analysis of the natural history of prolidase deficiency: description of 17 families and systematic review of published cases. Genet Med 2021; 23:1604-1615. [PMID: 34040193 DOI: 10.1038/s41436-021-01200-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Prolidase deficiency is a rare inborn error of metabolism causing ulcers and other skin disorders, splenomegaly, developmental delay, and recurrent infections. Most of the literature is constituted of isolated case reports. We aim to provide a quantitative description of the natural history of the condition by describing 19 affected individuals and reviewing the literature. METHODS Nineteen patients were phenotyped per local institutional procedures. A systematic review following PRISMA criteria identified 132 articles describing 161 patients. Main outcome analyses were performed for manifestation frequency, diagnostic delay, overall survival, symptom-free survival, and ulcer-free survival. RESULTS Our cohort presented a wide variability of severity. Autoimmune disorders were found in 6/19, including Crohn disease, systemic lupus erythematosus, and arthritis. Another immune finding was hemophagocytic lymphohistiocytosis (HLH). Half of published patients were symptomatic by age 4 and had a delayed diagnosis (mean delay 11.6 years). Ulcers were present initially in only 30% of cases, with a median age of onset at 12 years old. CONCLUSION Prolidase deficiency has a broad range of manifestations. Symptoms at onset may be nonspecific, likely contributing to the diagnostic delay. Testing for this disorder should be considered in any child with unexplained autoimmunity, lower extremity ulcers, splenomegaly, or HLH.
Collapse
Affiliation(s)
- Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marvid S Duarte Moreno
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Robert-Debré, Université de Paris, Paris, France
| | - Jean-François Benoist
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Necker-Enfants malades, Université de Paris, Paris, France
| | - Manfred Boehm
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanuelle Bourrat
- Reference Center for Genodermatoses MAGEC Saint Louis, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Saint Louis, Paris, France
| | - Aline Cano
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de Marseille, Centre Hospitalier Universitaire de La Timone Enfants, Marseille, France
| | - Brigitte Chabrol
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de Marseille, Centre Hospitalier Universitaire de La Timone Enfants, Marseille, France
| | - Claudine Cosson
- Laboratoire de Biochimie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | | | - Arthur D'Harlingue
- Benioff Children's Hospital Oakland, University of California, San Francisco, Oakland, CA, USA
| | - David Dimmock
- Project Baby Bear, Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - María Tallón García
- Hospital Álvaro Cunqueiro, Universidad de Santiago de Compostela, Vigo, Spain
| | - Cheryl Garganta
- Division of Genetics and Metabolism, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tobias Goerge
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Sara S Halbach
- University of Chicago Medicine, University of Chicago, Chicago, IL, USA
| | - Jan de Laffolie
- University Children's Hospital, Justus-Liebig-University, Giessen, Germany
| | - Christina T Lam
- Seattle Children's Hospital, Seattle, WA, USA.,Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ludovic Martin
- Centre Hospitalier Universitaire d'Angers, Angers, France
| | | | - Andrea Meinhardt
- University Children's Hospital, Justus-Liebig-University, Giessen, Germany
| | - Isabelle Melki
- General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Paris, France.,Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noémie Pérez
- Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Dulce Quelhas
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Anna Scott
- Seattle Children's Hospital, Seattle, WA, USA.,Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Anne M Slavotinek
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital San Francisco, University of California, San Francisco, San Francisco, CA, USA
| | | | - Sarah L Stein
- University of Chicago Medicine, University of Chicago, Chicago, IL, USA
| | - Kira Süßmuth
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jenny Thies
- Seattle Children's Hospital, Seattle, WA, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Manuel Schiff
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Robert-Debré, Université de Paris, Paris, France.,Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Necker-Enfants malades, Université de Paris, Paris, France.,INSERM U1163, Institut Imagine, Paris, France
| |
Collapse
|
3
|
Spurious Elevation of Multiple Urine Amino Acids by Ion-Exchange Chromatography in Patients with Prolidase Deficiency. JIMD Rep 2016; 31:45-49. [PMID: 27067078 PMCID: PMC5388643 DOI: 10.1007/8904_2016_552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/10/2023] Open
Abstract
The enzyme prolidase cleaves dipeptides where the C-terminal amino acid corresponds to proline or hydroxyproline. As a consequence, a deficiency of this enzyme leads to accumulation of these dipeptides, which correspondingly are found to be elevated in urine. In fact, the absence of dipeptiduria is sufficient to rule out a diagnosis of prolidase deficiency. However, given the fact that these dipeptides elute at the same position as more common amino acids, the analyzer's software will instead call an elevation of these corresponding amino acids. Thus, an elevation of glycylproline, aspartylproline, glutamylproline, threonylproline and serylproline, valylproline, leucylproline, isoleucylproline, alanylproline, phenylalanylproline, and lysylproline will instead be interpreted as an elevation of leucine, citrulline, methionine, isoleucine, beta-aminoisobutyric acid, gamma-aminobutyric acid, ethanolamine, tyrosine, histidine, and anserine/carnosine, respectively. This particular profile of elevated amino acids, however, can easily be overlooked. We hope that the recognition of this characteristic pattern of falsely elevated urinary amino acids will aid in the recognition of prolidase deficiency.
Collapse
|