1
|
Chen M, Wu W, Wang S, Lai X, Liu M, Sun Y, Liu X, Li G, Song Y, Bao C, Li X, Chen G, Deng Y. Neutrophils as emerging immunotherapeutic targets: Indirect treatment of tumors by regulating the tumor immune environment based on a sialic acid derivative-modified nanocomplex platform. Int J Pharm 2022; 620:121684. [PMID: 35314280 DOI: 10.1016/j.ijpharm.2022.121684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
Tumor cells are dependent on their microenvironment; thus, targeting the non-cancerous components surrounding the tumor may be beneficial. Neutrophils are important inflammatory cells in the tumor microenvironment that significantly affect tumor cell proliferation, metastasis, and immune regulation. Targeted regulation of tumor-associated neutrophil-related pathways is expected to become a new therapeutic approach. Colchicine compounds are powerful anti-inflammatory drugs that strongly inhibit the chemotaxis of neutrophils to the inflammatory site. We attempted to achieve anticancer effects by utilizing its ability to inhibit neutrophil recruitment rather than killing tumor cells. As such drugs are likely to cause non-specific damages due to the lack of selectivity, we synthesized and used sialic acid and cholesterol derivatives (SA-CH) for surface modification of the newly synthesized low-toxic colchicine derivative (BCS) nanocomposite to improve neutrophil targeting. In vivo and in vitro experiments have shown that SA-CH-modified BCS preparations are effectively absorbed by neutrophils, inhibit cell migration, reduce infiltration of tumor-associated neutrophils, enhance T lymphocyte function, and exhibit good anti-S180 early tumor effect. In addition, in a triple-negative breast cancer model, the agent could strongly inhibit tumor metastasis to the lungs.
Collapse
Affiliation(s)
- Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Wenjing Wu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yiming Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Gang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Changshun Bao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohu Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Esculetin, a natural coumarin compound, evokes Ca2+ movement and activation of Ca2+-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells. Tumour Biol 2015; 37:4665-78. [DOI: 10.1007/s13277-015-4286-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
|
3
|
Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20:968-977. [PMID: 24574769 PMCID: PMC3921548 DOI: 10.3748/wjg.v20.i4.968] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/16/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.
Collapse
|
4
|
Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis G, Cohen C. COX-2 expression in invasive breast cancer: correlation with prognostic parameters and outcome. Appl Immunohistochem Mol Morphol 2007; 15:255-9. [PMID: 17721268 DOI: 10.1097/01.pai.0000213130.63417.b3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipoxygenases (LOX) and cyclooxygenases (COX) are key mediators of arachidonic acid metabolism. Recently, studies have reported that human breast carcinomas aberrantly express LOX and cyclooxygenase-2 (COX-2), and that decreased levels of 15-lipoxygenase (15-LOX) and raised levels of COX-2 and 12-LOX have prognostic value in patients with breast cancer. 15-LOX was significantly reduced with increasing stage, and in patients who developed metastatic disease, local recurrence, and/or died. With high COX-2, patients developed local recurrence, died from breast cancer and had reduced disease-free and disease-related overall survival in estrogen receptor (ER)-negative but not ER-positive disease. COX-2 expression is also associated with increased angiogenesis, lymph node metastasis, and Her2-neu overexpression. The purpose of this study is to evaluate COX-2 expression in breast cancer and to determine its correlation with prognostic parameters and outcome. Five tissue microarrays were constructed from 43 breast carcinomas and 5 normal breast tissues, represented by 1 mm cores in triplicate from each of 3 foci. Tissue microarray cores were immunostained with monoclonal COX-2. Expression was assessed as intensity and scored as percentage of cells positive. Prognostic parameters and follow-up information were obtained from the hospital records of Mexican Oncology Hospital, Mexico, where the carcinomas were diagnosed. Ninety-five percent (41/43) of the breast carcinomas showed cytoplasmic COX-2 expression. COX-2 intensity and percentage of cells positive correlated significantly with size of carcinoma (P=0.0271; P=0.0539, respectively). COX-2 intensity correlated significantly with histologic grade (P=0.0182). COX-2 did not correlate with outcome (disease-free and overall survival). There was no significant correlation between COX-2 and ER. In conclusion, COX-2 correlates with poor prognostic markers in breast cancer (large tumor size and high tumor grade), but not with outcome. The therapeutic value of COX-2 inhibitors in COX-2 positive breast cancer patients requires further investigation.
Collapse
Affiliation(s)
- Aziza Nassar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
5
|
Zhang W, McQueen T, Schober W, Rassidakis G, Andreeff M, Konopleva M. Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation. Leukemia 2005; 19:1977-84. [PMID: 16151469 DOI: 10.1038/sj.leu.2403929] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anaplastic large-cell lymphoma (ALCL) is a heterogeneous lymphoma category in which a subset of cases carry the t(2;5)(p23;q35) or variant translocations resulting in overexpression of anaplastic lymphoma kinase (ALK). LY293111 (2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-phenoxy] benzoic acid sodium salt) is a leukotriene B4 receptor antagonist, which was found to be safe and tolerable in Phase I clinical trials. In this study, we investigated the potential therapeutic effects and mechanisms of action of LY293111 in ALCL cell lines. LY293111 inhibited proliferation of both ALK(+) and ALK(-) ALCL cell in a dose-dependent fashion and induced complete G(1)-S cell cycle arrest, which was accompanied by upregulation of p27 and downregulation of cyclin E. Pretreatment with LY293111 for 4 h resulted in profound inhibition of serum-induced phosphorylation of extracellular-regulated kinases-1 and 2 and Akt and a concomitant increase in the phosphorylation of the stress-activated kinase c-jun N-terminal kinases (JNK). Simultaneously, LY293111 induced caspase-dependent apoptosis via activation of the intrinsic pathway, including early loss of mitochondrial inner transmembrane potential and the production of reactive oxygen species (ROS), cleavage of caspases-9, -3, poly ADP-ribose polymerase (PARP) and X-linked inhibitor of apoptosis. The phospho-JNK inhibitor SP600125 partially protected Sup-M2 cells from LY293111-induced apoptosis, PARP cleavage and ROS generation, suggesting a role for JNK in LY293111-induced cell death. These results warrant further studies of LY293111 in ALCL.
Collapse
Affiliation(s)
- W Zhang
- Department of Blood and Marrow Transplantation, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
6
|
Nielsen MO, Nyborg S, Jakobsen K, Fleet IR, Nørgaard J. Mammary uptake and excretion of prostanoids in relation to mammary blood flow and milk yield during pregnancy-lactation and somatotropin treatment in dairy goats. Domest Anim Endocrinol 2004; 27:345-62. [PMID: 15519039 DOI: 10.1016/j.domaniend.2004.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Mammary arterious-venous differences (A-V) and excretion into milk of four prostanoids were related to changes in milk yield and milk vein blood velocity (MBV) in goats at different stages of pregnancy and lactation, and during somatotropin (ST) treatment in mid-lactation. Arterial concentrations and mammary A-V for the vasodilators prostacyclin (PGI(2)) and prostaglandin (PG) E(2) (measured as 6-keto-PGF(1 alpha) and bicyclic PGE(2), respectively) decreased from late pregnancy to lactation. A-V were negatively correlated to MBV (r = -0.32 to -0.34). Arterial concentrations of the vasoconstrictors PGF(2 alpha) and TXA(2) (measured as TXB(2)) changed similarly, but no A-V across the mammary gland were found. The vasodilator to vasoconstrictor ratio in plasma was around 1:1, and in skimmed milk around 0.29-0.49 due to significantly higher TXB(2) levels in milk compared to plasma. Close linear correlations were established between milk yield and excretion of TXB(2) into milk (r = 0.80, P < 0.001), and between MBV and PGE(2) excretion into milk (r = 0.69, P < 0.001). ST treatment stimulated MBV and mammary prostanoid supply, and decreased prostanoid concentration in milk vein plasma. The high arterial levels of prostaglandins during pregnancy most likely reflected uterine synthesis. Our results support a role for PGI(2) and PGE(2) in local mammary blood flow regulation during lactation. Increased mammary uptake of these two prostanoids may be involved in the mammary blood flow response to ST. TXA(2) may be synthesized by mammary epithelial as well as vascular cells, and TXA(2) may be an important factor in regulation of mammary function.
Collapse
Affiliation(s)
- M O Nielsen
- Department of Animal and Veterinary Basic Sciences, The Royal Veterinary and Agricultural University, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
7
|
Budman DR, Calabro A. Studies of synergistic and antagonistic combinations of conventional cytotoxic agents with the multiple eicosanoid pathway modulator LY 293111. Anticancer Drugs 2004; 15:877-81. [PMID: 15457128 DOI: 10.1097/00001813-200410000-00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The arachidonic acid metabolic pathway is currently under active investigation as a promoter of malignancy and several molecules have been synthesized to block either the cyclooxygenase or lipoxygenase branches. LY 293111 is an oral agent known to be a leukotriene B4 antagonist, a 5-lipoxygenase inhibitor and a peroxisome proliferator-activated receptor (PPAR)-gamma agonist with cytotoxic properties in cell lines. We have studied this agent with classical chemotherapeutic agents in a 72-h culture with cell lines using median-effect analysis as a measure of antagonism or synergy. LY 293111 displays global synergy with the active metabolite of irinotecan, SN-38, in the majority of cell lines, synergistic to additive effects with gemcitabine in bladder cancer cell lines, and synergism with 5'-DFUR (the active metabolite of capecitabine) in two breast cancer and one sarcoma cell line. These effects occur at clinically attainable concentrations. The addition of a proteosome inhibitor to the LY 293111 and SN-38 combination markedly enhanced the cytotoxic effects in the sarcoma cell line. As the toxicity of LY 293111 in man is not hematological, this agent may have a role in combination therapy of selected malignancies.
Collapse
Affiliation(s)
- Daniel R Budman
- Don Monti Division of Oncology, North Shore University Hospital, New York University, Manhasset, NY 11030, USA.
| | | |
Collapse
|
8
|
Hennig R, Ding XZ, Tong WG, Witt RC, Jovanovic BD, Adrian TE. Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Lett 2004; 210:41-6. [PMID: 15172119 DOI: 10.1016/j.canlet.2004.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
New adjuvant therapies are needed for the treatment of stage III colon cancer. The essential fatty acids, linoleic and arachidonic acid enhance tumorigenesis through the cyclooxygenase and lipoxygenase pathways. Leukotriene B4 (LTB4) is a product of 5-lipoxygenase (5-LOX) which has tumor-promoting effects. The LTB4 receptor antagonist, LY293111 inhibited tumor growth and induced apoptosis in vitro. The effectiveness of LY293111, alone and in combination with gemcitabine was investigated in a heterotopic xenograft model in athymic mice using HT29 and LoVo human colonic cancer cells. The combined therapy markedly inhibited tumor growth and could warrant consideration as a new therapeutic option.
Collapse
Affiliation(s)
- Rene Hennig
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Tarry Building, 4-711, 303 East Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hoferová Z, Soucek K, Hofmanová J, Hofer M, Chramostová K, Fedorocko P, Kozubik A. In vitro proliferation of fibrosarcoma cells depends on intact functions of lipoxygenases and cytochrome P-450-monooxygenase. Cancer Invest 2004; 22:234-47. [PMID: 15199606 DOI: 10.1081/cnv-120030212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proliferation of mouse fibrosarcoma cells G:5:113 was studied in vitro after affecting particular pathways of arachidonic acid metabolism by selected inhibitors. After 48 hours of cultivation with nonspecific lipoxygenase inhibitors, nordihydroguaiaretic acid (NDGA) and esculetin; a specific 12-lipoxygenase inhibitor, baicalein; and inhibitor of five-lipoxygenase activating protein, MK-886, markedly suppressed the number of cells and induced significant changes in cell cycle distribution in a dose-dependent manner. While proadifen, an inhibitor of cytochrome P-450-monooxygenase, applied in low concentrations, increased the cell number, at higher concentrations, it inhibited cell proliferation and significantly changed the cell cycle. Cyclooxygenase inhibitors, ibuprofen, flurbiprofen, and diclofenac suppressed cell numbers only moderately without any changes in the cell cycle. The occurrence of apoptosis was not significant for any of the selected drugs in comparison with untreated control cells. Moreover, not even one of the drugs caused the specific cleavage of poly (ADP-ribose) polymerase to the 89-kDa fragment, however, a decrease in total amount of this protein was observed after treatment with NDGA and esculetin. We conclude that the proliferation ability of fibrosarcoma cells G:5:113 in vitro depends on intact functions of 5-lipoxygenase, 12-lipoxygenase, and cytochrome P-450-monooxygenases, and that the effects of inhibitors do not include regulation of apoptosis.
Collapse
Affiliation(s)
- Zuzana Hoferová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wallace JM. Nutritional and botanical modulation of the inflammatory cascade--eicosanoids, cyclooxygenases, and lipoxygenases--as an adjunct in cancer therapy. Integr Cancer Ther 2004; 1:7-37; discussion 37. [PMID: 14664746 DOI: 10.1177/153473540200100102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging on the horizon in cancer therapy is an expansion of the scope of treatment beyond cytotoxic approaches to include molecular management of cancer physiopathology. The goal in these integrative approaches, which extends beyond eradicating the affected cells, is to control the cancer phenotype. One key new approach appears to be modulation of the inflammatory cascade, as research is expanding that links cancer initiation, promotion, progression, angiogenesis, and metastasis to inflammatory events. This article presents a literature review of the emerging relationship between neoplasia and inflammatory eicosanoids (PGE2 and related prostaglandins), with a focus on how inhibition of their synthesizing oxidases, particularly cyclooxygenase (COX), offers anticancer actions in vitro and in vivo. Although a majority of this research emphasizes the pharmaceutical applications of nonsteroidal anti-inflammatory drugs and selective COX-2 inhibitors, these agents fail to address alternate pathways available for the synthesis of proinflammatory eicosanoids. Evidence is presented that suggests the inhibition of lipoxygenase and its by-products-LTB4, 5-HETE, and 12-HETE-represents an overlooked but crucial component in complementary cancer therapies. Based on the hypothesis that natural agents capable of modulating both lipoxygenase and COX may advance the efficacy of cancer therapy, an overview and discussion is presented of dietary modifications and selected nutritional and botanical agents (notably, omega-3 fatty acids, antioxidants, boswellia, bromelain, curcumin, and quercetin) that favorably influence eicosanoid production.
Collapse
Affiliation(s)
- Jeanne M Wallace
- Nutritional Solutions, Inc., 2935 North, 1000 East, North Logan, UT 84341, USA.
| |
Collapse
|
11
|
Ma DWL, Field CJ, Clandinin MT. An enriched mixture of trans-10,cis-12-CLA inhibits linoleic acid metabolism and PGE2 synthesis in MDA-MB-231 cells. Nutr Cancer 2003; 44:203-12. [PMID: 12734056 DOI: 10.1207/s15327914nc4402_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Conjugated linoleic acid (CLA) isomers are potent inhibitors of mammary tumor cell growth. Evidence suggests that CLA modulates essential fatty acid (EFA) metabolism; however, it is not clear which parts of this pathway are important regulatory points modulated by CLA. Enriched mixtures of D9-cis,11-trans (D9c,11t)- and D10-trans,12-cis (D10t,12c)-18:2 were used to assess outcome measures of EFA metabolism pertaining to membrane phospholipid incorporation, tumor cell growth, and prostaglandin E2 (PGE2) synthesis in the MDA-MB-231 mammary tumor cell line. Tumor cells were treated with linoleic acid (LA), an equal mixture (Mix), or enriched preparations of D9c,11t- or D10t,12c-18:2. Treatment with Mix or the enriched mixture of D10t,12c-18:2 significantly inhibited the synthesis of arachidonic acid (AA) from LA, resulting in increased levels of LA and decreased levels of AA in membrane phosphatidylcholine and phosphatidylethanolamine (P < 0.05). LA and AA levels were not altered in cells treated with enriched D9c,11t-18:2 and were similar to those in LA control treated cells. All CLA treatments reduced [3H]thymidine uptake, an indicator of tumor cell growth, by more than one-half relative to LA controls. MDA-MB-231 cells challenged with AA in the presence of all CLA mixtures resulted in significantly reduced PGE2 synthesis relative to controls treated with LA (P < 0.05). It is evident that individual isomers exert inhibitory effects at specific steps of EFA metabolism, which correspondingly leads to a reduction in PGE2 synthesis and, ultimately, tumor growth.
Collapse
Affiliation(s)
- David W L Ma
- Nutrition and Metabolism Research Group and the Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | |
Collapse
|
12
|
Abstract
We have previously proposed a role for calmodulin (CaM) in the regulation of initiation of Ca2+ entry in Jurkat T cells, as well as in the regulation of the current that mediates Ca2+ entry, IT. In this report, we provide evidence for the mechanism of CaM action. We have previously shown that activation-induced Ca2+ entry into Jurkat T cells is mediated by a current we have called IT. In the whole cell variation, but not the perforated patch variation, of the patch clamp technique, this current is short-lived (under 6 min) suggesting that the current is under the control of a diffusible component of the cytosol. Addition of CaM to the whole cell recording pipette solution maintained IT for up to 20 min, suggesting that CaM may be this diffusible component. Pharmacological inhibitors of CaM blocked the augmentation of IT normally induced by an activating stimulus. Cells electroporated in the presence of anti-CaM antibodies had reduced influx of extracellular Ca2+, with no change in release of Ca2+ from the internal stores. These observations suggest that T cell receptor engagement initiates Ca2+ influx by a pathway that likely includes CaM, which may in turn regulate IT. Influx of extracellular Ca2+ is required for cellular proliferation, and inhibition of CaM by pharmacological inhibitors reduced cellular proliferation. This same inhibition of proliferation was seen in cells electroporated with anti-CaM antibodies. This suggests that inhibition of CaM and/or IT may be a target for therapeutic inhibition of inappropriate T cell proliferation.
Collapse
Affiliation(s)
- D M Haverstick
- Department of Pathology, University of Virginia, Charlottesville, USA.
| | | | | |
Collapse
|
13
|
Jiang WG, Bryce RP, Horrobin DF. Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit Rev Oncol Hematol 1998; 27:179-209. [PMID: 9649932 DOI: 10.1016/s1040-8428(98)00003-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- W G Jiang
- University Department of Surgery, University of Wales College of Medicine, Cardiff, UK.
| | | | | |
Collapse
|