1
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2024; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Hughes S, Magnay J, Foreman M, Publicover SJ, Dobson JP, El Haj AJ. Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts. J Cell Physiol 2005; 206:738-48. [PMID: 16250016 DOI: 10.1002/jcp.20536] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TREK-1 is a mechanosensitive member of the two-pore domain potassium channel family (2PK+) that is also sensitive to lipids, free fatty acids (including arachidonic acid), temperature, intracellular pH, and a range of clinically relevant compounds including volatile anaesthetics. TREK-1 is known to be expressed at high levels in excitable tissues, such as the nervous system, the heart and smooth muscle, where it is believed to play a prominent role in controlling resting cell membrane potential and electrical excitability. In this report, we use RT-PCR, Western blotting and immunohistochemistry to confirm that human derived osteoblasts and MG63 cells express TREK-1 mRNA and protein. In addition, we show gene expression of TREK2c and TRAAK channels. Furthermore, whole cell patch clamp electrophysiology demonstrates that these cells express a spontaneously active, outwardly rectifying potassium "background leak" current that shares many similarities to TREK-1. The outward current is largely insensitive to TEA and Ba2+, and is sensitive to application of lysophosphatidylcholine (LPC). In addition, blocking TREK-1 channel activity is shown to upregulate bone cell proliferation. It is concluded that human osteoblasts functionally express TREK-1 and that these channels contribute, at least in part, to the resting membrane potential of human osteoblast cells. We hypothesise a possible role for TREK-1 in mechanotransduction, leading to bone remodelling.
Collapse
Affiliation(s)
- Steven Hughes
- Institute of Science and Technology in Medicine, Keele University Medical School, Hartshill Campus, Thornburrow Drive, Hartshill, Stoke-on-Trent, United Kingdom
| | | | | | | | | | | |
Collapse
|
3
|
Sorkin AM, Dee KC, Knothe Tate ML. “Culture shock” from the bone cell's perspective: emulating physiological conditions for mechanobiological investigations. Am J Physiol Cell Physiol 2004; 287:C1527-36. [PMID: 15317661 DOI: 10.1152/ajpcell.00059.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone physiology can be examined on multiple length scales. Results of cell-level studies, typically carried out in vitro, are often extrapolated to attempt to understand tissue and organ physiology. Results of organ- or organism-level studies are often analyzed to deduce the state(s) of the cells within the larger system(s). Although phenomena on all of these scales—cell, tissue, organ, system, organism—are interlinked and contribute to the overall health and function of bone tissue, it is difficult to relate research among these scales. For example, groups of cells in an exogenous, in vitro environment that is well defined by the researcher would not be expected to function similarly to those in a dynamic, endogenous environment, dictated by systemic as well as organismal physiology. This review of the literature on bone cell culture describes potential causes and components of cell “culture shock,” i.e., behavioral variations associated with the transition from in vivo to in vitro environment, focusing on investigations of mechanotransduction and experimental approaches to mimic aspects of bone tissue on a macroscopic scale. The state of the art is reviewed, and new paradigms are suggested to begin bridging the gap between two-dimensional cell cultures in petri dishes and the three-dimensional environment of living bone tissue.
Collapse
Affiliation(s)
- Adam M Sorkin
- Department of Biomedical Engineering, Case Western Reserve Univ., 10900 Euclid Ave., Olin 219, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
4
|
Wu SN, Jan CR, Chiang HT. Fenamates stimulate BKCa channel osteoblast-like MG-63 cells activity in the human. J Investig Med 2001; 49:522-33. [PMID: 11730088 DOI: 10.2310/6650.2001.33629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The fenamates, a family of nonsteroidal anti-inflammatory drugs that are derivatives of N-phenylanthranilic acid, are the inhibitors of cyclo-oxygenase. The ionic mechanism of actions of these compounds in osteoblasts is not well understood. METHODS The effects of the fenamates on ionic currents were investigated in a human osteoblast-like cell line (MG-63) with the aid of the whole-cell and inside-out configurations of the patch-clamp technique. RESULTS In MG-63 cells, niflumic acid and meclofenamic acid increased K+ outward currents (IK). The niflumic acid-stimulated IK was reversed by subsequent application of iberiotoxin or paxilline, yet not by that of glibenclamide or apamin. In the inside-out configuration, niflumic acid (30 micromol/L) added to the bath did not modify single-channel conductance but increased the activity of large-conductance Ca2+-activated K+ (BKCa) channels. The EC50 values for niflumic acid- and meclofenamic acid-induced channel activity were 22 and 24 micromol/L, respectively. Niflumic acid (30 micromol/L) and meclofenamic acid (30 micromol/L) shifted the activation curve of BKCa channels to less positive membrane potentials. Membrane stretch potentiated niflumic acid-stimulated channel activity. The rank order of potency for the activation of BKCa channels in these cells was niflumic acid = meclofenamic acid > tolfenamic acid > flufenamic acid > nimesulide. Evans blue and nordihydroguaiaretic acid increased channel activity; however, indomethacin, piroxicam, and NS-398 had no effect on it. CONCLUSIONS The fenamates can stimulate BKCa channel activity in a manner that seems to be independent of the action of these drugs on the prostaglandin pathway. The activation of the BKCa channel may hyperpolarize the osteoblast, thereby modulating osteoblastic function.
Collapse
Affiliation(s)
- S N Wu
- Department of Medical Education and Research, Kaohsiung-Veterans General Hospital, Kaohsiung City, Taiwan, ROC.
| | | | | |
Collapse
|
5
|
Abstract
Osteocytes play an important role in signaling within bone. Communication of osteocytes with each other and with bone lining cells may have a function in mineral homeostasis and mechanotransduction. However, very little is known of the expression of ion channels in these cells. Using the whole-cell patch-clamp technique, we have detected three types of K(+) currents in the mouse osteocyte-like cell line MLO-Y4. The most commonly observed current (48% of cells) activated rapidly (20 msec) in response to depolarizing steps from -40 mV and exhibited voltage-dependent inactivation. The current was inhibited by 20 mmol/L tetraethyl ammonium (TEA) and abolished by intracellular 2 mmol/L 4-aminopyridine (4-AP). Biophysical and pharmacological characteristics of the current differed from those of inactivating K(+) currents in osteoblastic cells. In 22% of cells, a slowly activating, voltage-activated current was observed (threshold at 20-30 mV). This current was TEA insensitive, was abolished by intracellular application of 2 mmol/L 4-AP, and was strongly inhibited by apamin, a selective inhibitor of small conductance (SK) Ca(2+)-activated K(+) channels. A third current developed during whole-cell dialysis (37% of cells). This current showed little voltage sensitivity. It was abolished by intracellular application of 2 mmol/L 4-AP, high-extracellular Ba(2+) (108 mmol/L), or by inclusion of ATP in the intracellular solution, but was insensitive to TEA, apamin, Cs(+), and glibenclamide. None of these currents was affected by replacement of chloride with acetate in the bath or pipette salines. Reverse-transcription polymerase chain reaction confirmed the presence of mRNA for the types 1 and 2 SK channels, but message for the large conductance (BK) Ca(2+)-activated K(+) channel was not detected in these cells. Message for the sulphonylurea receptor SUR2, a subunit of glibenclamide-insensitive ATP-dependent K(+) channels (K(ATP)), was also detected, but the glibenclamide-sensitive SUR1 subunit was not. These data are the first descriptions of SK- and ATP-sensitive, glibenclamide-insensitive channels in cells of osteoblastic lineage. Our findings are consistent with a change in K(+) channel expression during differentiation from osteoblast to osteocyte. K(+) channels of osteocytes will contribute to maintenance of the cell membrane potential and thus may participate in mechanosensitivity and osteocyte intercellular communication. In addition, they may be involved in homeostatic maintenance of the extracellular fluid occupying the periosteocytic space.
Collapse
Affiliation(s)
- Y Gu
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
6
|
Ion Channels in Osteoclasts. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Moreau R, Aubin R, Lapointe JY, Lajeunesse D. Pharmacological and biochemical evidence for the regulation of osteocalcin secretion by potassium channels in human osteoblast-like MG-63 cells. J Bone Miner Res 1997; 12:1984-92. [PMID: 9421231 DOI: 10.1359/jbmr.1997.12.12.1984] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous reports have suggested the involvement of voltage-activated calcium (Ca2+) channels in bone metabolism and in particular on the secretion of osteocalcin by osteoblast-like cells. We now report that potassium (K+) channels can also modulate the secretion of osteocalcin by MG-63 cells, a human osteosarcoma cell line. When 1,25-dihydroxyvitamin D3(1,25(OH)2D3)-treated MG-63 cells were depolarized by step increases of the extracellular K+ concentration ([K+]out) from 5-30 mM, osteocalcin (OC) secretion increased from a control value of 218 +/- 13 to 369 +/- 18 ng/mg of protein/48 h (p < 0.005 by analysis of variance). In contrast, in the absence of 1,25(OH)2D3, there is no osteocalcin secretion nor any effect of cell depolarization on this activity. The depolarization-induced increase in 1,25(OH)2D3-dependent osteocalcin secretion was totally inhibited in the presence of 10 microM Nitrendipine (a Ca2+ channel blocker, p < 0.005) without affecting cellular alkaline phosphatase nor cell growth. Charybdotoxin, a selective blocker of Ca2+-dependent K+ channels (maxi-K) present in MG-63 cells, stimulated 1,25(OH)2D3-induced osteocalcin synthesis about 2-fold (p < 0.005) after either 30, 60, or 120 minutes of treatment. However, Charybdotoxin was without effect on basal release of osteocalcin in the absence of 1,25(OH)2D3 pretreatment. Using patch clamp technique, we occasionally observed the presence of a small conductance K+ channel, compatible with an ATP-dependent K+ channel (GK[ATP]) in nonstimulated cells, whereas multiple channel openings were observed when cells were treated with Diazoxide, a sulfonamide derivative which opens GK(ATP). Western blot analysis revealed the presence of the N-terminal peptide of GK(ATP) in MG-63 cells, and its expression was regulated with the proliferation rate of these cells, maximal detection by Western blots being observed during the logarithmic phase of the cycle. Glipizide and Glybenclamide, selective sulfonylureas which can block GK(ATP), dose-dependently enhanced 1,25(OH)2D3-induced OC secretion (p < 0.005). Reducing the extracellular calcium concentration with EGTA (microM range) totally inhibited the effect of Glipizide and Glybenclamide on osteocalcin secretion (p < 0.005), which remained at the same levels as controls. Diazoxide totally prevented the effect of these sulfonylureas. These results suggest that voltage-activated Ca2+ channels triggered via cell depolarization can enhance 1,25(OH)2D3-induced OC release by MG-63 cells. In addition, OC secretion is increased by blocking two types of K+ channels: maxi-K channels, which normally hyperpolarize cells and close Ca2+ channels, and GK(ATP) channels. The role of these channels is closely linked to the extracellular Ca2+ concentration.
Collapse
Affiliation(s)
- R Moreau
- Centre de Recherche Guy-Bernier, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
8
|
Zanello LP, Norman AW. Stimulation by 1alpha,25(OH)2-vitamin D3 of whole cell chloride currents in osteoblastic ROS 17/2.8 cells. A structure-function study. J Biol Chem 1997; 272:22617-22. [PMID: 9278418 DOI: 10.1074/jbc.272.36.22617] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1alpha,25-Dihydroxyvitamin D3 (1alpha,25(OH)2D3) can generate biological responses via genomic and nongenomic mechanisms. This article reports for the first time the effects of 1alpha,25(OH)2D3 and structurally related analogs on whole cell chloride currents in osteoblastic cells. 1alpha,25(OH)2D3 promoted the rapid enhancement of outwardly rectifying Cl- currents in 93% of the osteoblasts in a concentration-dependent manner, with a maximal increase of about 4-fold between 0.5 and 5 nM. This effect of 1alpha,25(OH)2D3 was blocked by 1 nM stereoisomer 1beta,25(OH)2D3 when added to the bath before 1alpha,25(OH)2D3. On the other hand, 1 nM of the 6-s-cis locked analog 1alpha,25(OH)2-lumisterol3 significantly increased by about 2.2-fold outward Cl- currents in the ROS 17/2.8 cells, whereas the increase promoted by same concentration of the 6-s-trans locked analog 1alpha,25(OH)2-tachysterol (0.8-fold) was significantly lower, suggesting that the 6-s-cis locked or steroid-like form was preferred over the extended 6-s-trans conformer to promote these rapid effects of the hormone. We conclude that the agonist effects of 1alpha,25(OH)2D3 in osteoblasts at the cellular membrane level seem to be determined by some structural features of the molecule which may be crucial for its interaction with a putative membrane receptor in the cell surface.
Collapse
Affiliation(s)
- L P Zanello
- Department of Biochemistry and Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
9
|
Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res 1997; 12:1133-41. [PMID: 9200014 DOI: 10.1359/jbmr.1997.12.7.1133] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone cells respond to mechanical stimuli, but the transduction mechanisms responsible are not fully understood. Integrins, a family of heterodimeric transmembrane glycoproteins, which link components of the extracellular matrix with the actin cytoskeleton, have been implicated as mechanoreceptors. We have assessed the roles of integrins in the transduction of cyclical mechanical stimuli to human bone cells (HBCs), which results in changes in membrane potential. HBC showed membrane depolarization following 0.104 Hz mechanical stimulation and membrane hyperpolarization following stimulation at 0.33 Hz. The membrane depolarization response involved tetrodotoxin-sensitive sodium channels and could be inhibited by antibodies against alpha V, beta 1, and beta 5 integrins. In contrast, the hyperpolarization response was inhibited by gadolinium and antibodies to the integrin-associated protein (CD47), alpha 5 and beta 1 integrin. Both responses could be abrogated by ARg-Gly-Asp (RGD)-containing peptides, inhibition of tyrosine kinase activity, and disruption of the cytoskeleton. These results demonstrate differential electrophysiological responses of HBC to different frequencies of mechanical strain. Furthermore, they suggest that integrins act as HBC mechanoreceptors with distinct signaling pathways being activated by different frequencies of mechanical stimuli.
Collapse
Affiliation(s)
- D M Salter
- Department of Pathology, Edinburgh University Medical School, United Kingdom
| | | | | |
Collapse
|
10
|
Black JA, Westenbroek RE, Catterall WA, Waxman SG. Type II brain sodium channel expression in non-neuronal cells: embryonic rat osteoblasts. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:89-98. [PMID: 8750864 DOI: 10.1016/0169-328x(95)00141-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although voltage-sensitive sodium channels play a central role in electrogenesis in neurons, rat brain sodium channels are also present in some glial cells. To determine whether rat brain sodium channel alpha-subunit isotypes are expressed in other cell types, we examined osteoblasts within the embryonic day 17 (E17) vertebral column with in situ hybridization and immunocytochemical methods. For in situ hybridization studies, riboprobes hybridizing to isoform-specific sequences in the 3'-noncoding region of sodium channel mRNAs (NCI, NCII and NCIII) were utilized. Sodium channel mRNA I and III were not detectable in osteoblasts of the vertebra centrum or neural arches in E17 rats. In contrast, sodium channel mRNA II was moderately expressed by osteoblasts in the developing vertebral column of E17 rats. In immunocytochemical experiments, antipeptide antibodies directed against conserved and isotype-specific regions of the sodium channel alpha-subunit were used. Antibody SP20, which recognizes a conserved region of the sodium channel, intensely stains osteoblasts in both the vertebra centrum and neural arches. Antibody SP11-I, which recognizes sodium channel I, exhibited negligible-to-low levels of immunostaining in vertebral column osteoblasts. Osteoblasts reacted with antibody SP11-II, which recognizes sodium channel II, displayed moderate levels of immunostaining. Antibody SP32-III, which recognizes sodium channel III, displayed negligible levels of staining in osteoblasts within vertebra centrum and neural arches. These results demonstrate that osteoblasts in situ within E17 vertebral columns express sodium channel II mRNA and protein. Together with previous electrophysiological observations, the present results suggest that functional sodium channels are expressed in osteoblasts in vivo. These results extend the range of non-neuronal cells known to express rat brain sodium channels.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.
Collapse
Affiliation(s)
- R L Duncan
- Biomechanics and Biomaterials Research Center, Indiana University Medical Center, Indianapolis 46202, USA
| | | |
Collapse
|
12
|
Chesnoy-Marchais D, Fritsch J. Potassium currents and effects of vitamin D-3 metabolites and cyclic GMP in rat osteoblastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1148:239-48. [PMID: 8389197 DOI: 10.1016/0005-2736(93)90135-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A K+ current (IK1), activated by depolarization above -20 mV, showing voltage-dependent inactivation within a few seconds and reduced by 40% by 1 mM TEA, was observed in all cells. In a few cells, we also observed a progressive K(+)-current increase during cell dialysis. The developing current (IK2) was not sensitive to 1 mM TEA and did not inactivate. It was detectable over the whole voltage range and slowly increased during 10 s depolarizations. 1,25-(OH)2D3 and 24,25-(OH)2D3 did not affect IK1, but induced a small K(+)-current increase in some cells showing no IK2. This effect was not mimicked by cyclic GMP analogs which, on the contrary, induced a K(+)-current decrease. 24,25-(OH)2D3 (even at 10(-11)M, but not 1,25-(OH)2D3, strongly reduced IK2. The results further document the diversity of voltage-gated currents of osteoblastic cells, confirm the existence of immediate effects of vitamin D-3 metabolites, which are independent of classical 1,25-(OH)2D3 receptors.
Collapse
|
13
|
Davidson RM. Membrane stretch activates a high-conductance K+ channel in G292 osteoblastic-like cells. J Membr Biol 1993; 131:81-92. [PMID: 8433353 DOI: 10.1007/bf02258536] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A high-conductance K(+)-selective ion channel was studied in excised membrane patches from human G292 osteoblast-like osteosarcoma cells. Channel conductance averaged approximately 170 pS in symmetric solutions of 153 mM KCl, and approximately 135 pS when the pipette was filled with standard saline (150 mM NaCl). The probability of the channel being in an open state (Popen) increased with membrane potential, internal calcium, and applied negative pressure. At pCa7, channel activity was observed at membrane potentials greater than approximately 60 mV, while at pCa3, channel activity was seen at approximately 10 mV. Likewise, in the absence of applied pressure, channel openings were rare (Popen = 0.02), whereas with -3 cm Hg applied pressure, Popen increased to approximately 0.40. In each case, i.e., voltage, calcium concentration, and pressure, the increase in Popen resulted from a decrease in the duration of long-closed (interburst) intervals and an increase in the duration of long-open (burst) intervals. Whole-cell responses were consistent with these findings. Hypotonic shock produced an increase in the amplitude and conductance of the outward macroscopic current and a decrease in its rise time, and both single-channel and whole-cell currents were blocked by barium. It is suggested that the voltage-gated, calcium dependent maxi-K+ channel in G292 osteoblastic cells is sensitive to membrane stretch and may be directly involved in osmoregulation of these cells. Further, stretch sensitivity of the maxi-K+ channel in osteotrophic cells may represent an adaptation to stresses associated with mechanical loading of mineralized tissues.
Collapse
Affiliation(s)
- R M Davidson
- Department of Periodontology, University of Connecticut Health Center, Farmington 06030
| |
Collapse
|
14
|
Ypey DL, Weidema AF, Höld KM, Van der Laarse A, Ravesloot JH, Van Der Plas A, Nijweide PJ. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells. J Bone Miner Res 1992; 7 Suppl 2:S377-87. [PMID: 1283043 DOI: 10.1002/jbmr.5650071404] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Embryonic chick bone cells express various types of ionic channels in their plasma membranes for as yet unresolved functions. Chick osteoclasts (OCL) have the richest spectrum of channel types. Specific for OCL is a K+ channel, which activates (opens) when the inside negative membrane potential (Vm) becomes more negative (hyperpolarization). This is consistent with findings of others on rat OCL. The membrane conductance constituted by these channels is called the inward rectifying K+ conductance (GKi), or inward rectifier, because the hyperpolarization-activated channels cause cell-inward K+ current to pass more easily through the membrane than outward K+ current. Besides GKi channels, OCL may express two other types of voltage-activated K+ channels. One constitutes the transient outward rectifying K+ conductance (GKto), which is activated upon making the membrane potential less negative (depolarization) but has a transient nature. This conductance favors transient K+ conduction in the cell-outward direction. The GKto also occurs in a small percentage of cells in osteoblast (OBL) and periosteal fibroblast (PFB) cultures. The other OCL K+ conductance, the GKCa, is activated by both membrane depolarization and a rise in [Ca2+]i. GKCa channels are also present in the other chick bone cell types, that is, OBL, osteocytes (OCY), and PFB. Furthermore, in excised patches of all bone cell types, channels have been found that conduct anions, including Cl- and phosphate ions. These channels are only active around Vm = 0 mV. While searching for a membrane mechanism for adaptation of bone to mechanical loading, we found stretch-activated channels in chick osteoclasts; other investigators have found stretch-activated cation channels (K+ or aselective) in rat and human osteogenic cell lines. In contrast to other studies on cell lines or OBL from other species, we have not found any of the classic macroscopic voltage-activated calcium conductances (GCa) in any of the chick bone cells under our experimental conditions. However, our fluorescence measurements of [Ca2+]i in single cells indicate the presence of Ca2+ conductive pathways through the plasma membrane of osteoblastic cells and osteoclasts, consistent with other studies. We discuss possible roles for GKi, GKCa, and anion channels in acid secretion by OCL and for stretch-activated channels in OCL locomotion.
Collapse
Affiliation(s)
- D L Ypey
- Department of Physiology, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Walsh KB, Cannon SD, Wuthier RE. Characterization of a delayed rectifier potassium current in chicken growth plate chondrocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1335-40. [PMID: 1375434 DOI: 10.1152/ajpcell.1992.262.5.c1335] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the use of the whole cell arrangement of the patch-clamp technique, an outward-directed time-dependent potassium current was identified in cultured chicken growth plate chondrocytes. This delayed rectifier potassium current (IK) activated with a sigmoidal time course during voltage steps to potentials positive to -40 mV. The half-maximal voltage required for current activation was determined to be -8 mV. The reversal potential (Erev) for IK, measured using deactivating tail currents, was -72 mV in the presence of 140 mM internal and 5 mM external [K+] solutions. Changes in external [K+] caused Erev to shift in a manner expected for a potassium-selective channel. In addition, increasing external [K+] from 5 to 50 mM caused the slope conductance of the tail currents to increase twofold. The chondrocyte IK was inhibited by the potassium-channel blocker 4-aminopyridine (4-AP) at concentrations of 0.5-4 mM and by the scorpion venom toxin charybdotoxin (CTX; 10 nM) but was unaffected by 10 mM tetraethylammonium (TEA). Addition of 20 microM ZnCl2 reduced IK in a voltage-dependent manner with the greatest inhibition found to occur at potentials near the threshold for current activation. Reduction of IK by ZnCl2 was accompanied by a slowing in the kinetics of IK activation. On the basis of the gating and pharmacological properties of this current, it is suggested that the chondrocyte channel belongs to a superfamily of K+ channels found in bone and immune system cells. The chondrocyte K+ channel may contribute to the unusually high [K+] found in the extracellular fluid of growth plate cartilage.
Collapse
Affiliation(s)
- K B Walsh
- Department of Pharmacology, University of South Carolina School of Medicine, Columbia 29208
| | | | | |
Collapse
|
16
|
Ginsborg BL, Martin RJ, Patmore L. On the sodium and potassium currents of a human neuroblastoma cell line. J Physiol 1991; 434:121-49. [PMID: 2023115 PMCID: PMC1181410 DOI: 10.1113/jphysiol.1991.sp018462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The patch-clamp method was applied to the study of ionic currents activated by depolarization of undifferentiated IMR-32 human neuroblastoma cells. Whole-cell sodium and potassium currents and single potassium ion channel currents from cell-attached patches were investigated. 2. Cells had a mean resting potential of -38 mV and mean input resistance of 1.6 G omega. Single action potentials were evoked under current clamp during the injection of depolarizing currents. 3. A voltage-dependent inward sodium current was observed which reversed at +44 mV. A Boltzmann fit to the activation curve gave a half-maximal activation voltage of -41.6 mV and a 'slope' of 3.9 mV. The steady-state inactivation curve had a half-maximal inactivation voltage of -81 mV and a 'slope' of 9.7 mV. 4. The time-dependent activation and inactivation of the current displayed classical Hodgkin-Huxley kinetics. Values for the time constants tau m and tau h of 0.16 and 0.63 ms were calculated for a voltage jump from -80 to -10 mV; tau m and tau h decreased as the step potential was changed from -30 to +20 mV. 5. Outward currents were activated in bathing solutions substantially free of anions and could thus be attributed to potassium ions. The tail current reversed in direction on repolarization to -60 mV when the potassium concentration in the bathing solution was increased from 6 to 30 mM. When the bathing solution contained 145 mM-potassium, and the patch pipette, 95 mM, a depolarization to -10 mV from a holding potential of -60 mV evoked an inward current. 6. Outward currents were examined by using voltage pulses which depolarized the cell to -20 mV, or more positive values, from a holding potential of -80 mV and by pulses which depolarized the cell to 0 mV, or to positive values, from a holding potential of -30 mV. A Boltzmann fit of typical activation data gave a half-maximal activation voltage of 17 mV and a 'slope' of 14 mV. 7. The time course of the rising phase of the current was described by a function of the form A(1-exp[-(t-delta t)/tau]), where delta t varied between 1 and 4 ms and tau varied between 4 and 27 ms, decreasing with increasing depolarization. There was no evidence for a fast transient component. 8. The amplitude of outward currents was reduced by extracellular calcium ions, cobalt ions, tetraethylammonium and 4-aminopyridine.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B L Ginsborg
- Department of Pharmacology, University of Edinburgh
| | | | | |
Collapse
|
17
|
Ravesloot JH, van Houten RJ, Ypey DL, Nijweide PJ. Identification of Ca(2+)-activated K+ channels in cells of embryonic chick osteoblast cultures. J Bone Miner Res 1990; 5:1201-10. [PMID: 2075833 DOI: 10.1002/jbmr.5650051203] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Primary cultures of embryonic chick osteoblasts consist of a heterogeneous cell population. Patch clamp measurements were done on 1- to 5-day-old osteoblasts, osteocytes, fibroblastlike cells, and cells that could not be classified on morphologic criteria. The measurements showed the omnipresence of depolarization-activated high-conductance channels in cell-attached patches. The whole-cell experiments showed an outward rectifying conductance activating at positive membrane potentials. Channels underlying the latter conductance were found to be K+ conducting in outside-out membrane patches. The activation potential of the outward rectifying K+ conductance shifted to negative membrane potentials upon increasing the intracellular Ca2+ concentration within the range of 10(-8)-10(-3.2) M. The same happened with the activation potential of the K+ channels found in outside-out patches. Finally, inside-out patch experiments directly demonstrated the dependency of the activation potential of K+ channels on Ca2+ ions. Thus the identity and main characteristics of Ca2(+)-activated K+ channels expressed by the various cell types present in chick osteoblast cultures have now been established. Decreased input resistances were found in cells of cultures more than 2 days old. This is consistent with the establishment of electrical coupling between the cells. Functions in which Ca2(+)-activated K+ channels could play a role are discussed.
Collapse
Affiliation(s)
- J H Ravesloot
- Department of Physiology and Physiological Physics, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
18
|
Davidson RM, Tatakis DW, Auerbach AL. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 1990; 416:646-51. [PMID: 1701046 DOI: 10.1007/bf00370609] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patch-clamp recording techniques were used to examine the direct effects of mechanical stimulation on ion channel activity in human osteoblast-like osteosarcoma cells. Three classes of mechanosensitive ion channels were present and could be distinguished on the basis of conductance, ionic selectivity, and sensitivity to membrane tension. The largest conductance channel (160 pS) was K(+)-selective and showed both a decrease in long closed interval duration and an increase in burst length with increasing membrane tension. For low applied pressures, there was an e-fold increase in the probability of this channel being open (Popen) for every 3.4 cm2 Hg change in pressure. Two additional pressure-dependent channels had smaller conductances, i.e., 60 pS and 20 pS; the 60 pS channel appeared to be non-selective for cations. We propose that one or more of these mechanosensitive channels is involved in the response of bone to mechanical loading.
Collapse
Affiliation(s)
- R M Davidson
- Department of Oral Biology, University at Buffalo, NY 14214
| | | | | |
Collapse
|
19
|
Massass R, Bingmann D, Korenstein R, Tetsch P. Membrane potential of rat calvaria bone cells: dependence on temperature. J Cell Physiol 1990; 144:1-11. [PMID: 2365737 DOI: 10.1002/jcp.1041440102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The membrane potentials of bone cells derived from calvaria of new born rats was shown to be strongly dependent on temperature. When we lowered the temperature from 36 degrees C to 26 degrees C, cells with spontaneous resting membrane potentials (MP) of -80 to -50 mV depolarized (mean amplitude 8 mV; n = 33), and the membrane resistance increased by approximately 80% (n = 20). The temperature response depended on the actual MP, the reversal potential being in the range of -80 to -90 mV. With the application of ouabain (0.1-1 mmol/liter; n = 12), cells depolarized. Simultaneously, the reversal potential of the temperature response was shifted towards more positive values and approached the actual MP level of the cells. Consequently, the depolarization amplitudes induced by lowering temperature were reduced at spontaneous MP levels. The rise of the membrane resistance during cooling was unaffected. When the extracellular chloride concentration was reduced from 133 to 9 mmol/liter, temperature-dependent depolarizations persisted at spontaneous MP values (n = 5). The findings indicate that the marked effects of temperature changes on the MP of bone-derived cells are mainly determined by changes of the potassium conductance.
Collapse
Affiliation(s)
- R Massass
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
20
|
Abstract
A novel design for a pipette holder for use in patch-clamp experiments is presented. The holder is designed for use in patch-clamp amplifiers equipped with female BNC-type connectors on the headstage. In this design the glass micropipette cannot contact the Ag/AgCl electrode, thus avoiding deterioration and subsequent offset voltages and baseline current drifts of the Ag/AgCl electrode, induced by frequent replacement of micropipettes.
Collapse
Affiliation(s)
- H P Buisman
- Department of Physiology and Physiological Physics, University of Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Grygorczyk C, Grygorczyk R, Ferrier J. Osteoblastic cells have L-type calcium channels. BONE AND MINERAL 1989; 7:137-48. [PMID: 2478237 DOI: 10.1016/0169-6009(89)90071-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whole cell patch clamp studies on osteoblast-like rat osteosarcoma cells (ROS 17/2.8) show the existence of L-type calcium channels in the cell membrane. Measurements were carried out at both 21 and 37 degrees C. With isotonic CsCl in the pipette and a bathing medium containing either 110 or 10 mM Ba2+, a strong depolarizing pulse was required to activate an inward current. The current-voltage relationship (I-V) of this inward current showed a maximum amplitude near +30 mV at 21 and 37 degrees C, with 110 mM Ba2+ in the bathing medium, and near +10 mV at 37 degrees C with 10 mM Ba2+. At both 21 and 37 degrees C the dihydropyridine, BAY K 8644 (2 microM), increased this current and shifted the I-V maximum to less positive potentials, while nifedipine (5 microM) reduced the current. Cd2+ (50 microM) and Co2+ (100 microM) blocked the current. At 21 degrees C the measured inward current showed a slow inactivation, with a time constant of some hundreds of milliseconds. At 37 degrees C, inactivation was considerably faster. The current was suppressed by holding the membrane potential more positive than -30 mV. These data are strong evidence that ROS 17/2.8 cells have a significant number of 'L-type' calcium channels.
Collapse
Affiliation(s)
- C Grygorczyk
- MRC Group in Periodontal Physiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Ravesloot JH, Ypey DL, Vrijheid-Lammers T, Nijweide PJ. Voltage-activated K+ conductances in freshly isolated embryonic chicken osteoclasts. Proc Natl Acad Sci U S A 1989; 86:6821-5. [PMID: 2549551 PMCID: PMC297938 DOI: 10.1073/pnas.86.17.6821] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Patch-clamp measurements on freshly isolated embryonic chicken osteoclasts revealed three distinct types of voltage-dependent K+ conductance. The first type of conductance, present in 72% of the cells, activated at membrane potentials less negative than -30 to -20 mV and reached full activation at +40 mV. It activated with a delay, reached a peak value, and then inactivated with a time constant of approximately 1.5 s. Inactivation was complete or almost so. Recovery from inactivation, at -70 mV, had a time constant of roughly 1 s. The conductance could be blocked, at least partly, by 4 mM 4-aminopyridine. The second type of conductance (present in all cells) activated at membrane potentials more negative than -40 to -80 mV and reached full activation at -130 mV. Activation potential and maximal conductance were dependent on the extracellular K+ concentration. Inactivation of the conductance first became apparent at membrane potentials more negative than -100 mV and was a two-exponential process. The conductance could be blocked by external 5 mM Cs+ ions. The third type of conductance (present in all cells) activated at membrane potentials more positive than +30 mV. Generally, the conductance did not inactivate.
Collapse
Affiliation(s)
- J H Ravesloot
- Department of Cell Biology and Histology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|