1
|
Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 2017; 7:16215. [PMID: 29176723 PMCID: PMC5701230 DOI: 10.1038/s41598-017-16381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular mechanisms of Na+, Cl−, and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.
Collapse
|
2
|
Bianchini A, Pequeux A, Gilles R. Effects of TAP and DPC on the transepithelial potential difference of isolated perfused gills of the fresh water acclimated crab, Eriocheir sinensis. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0300-9629(88)91122-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Bentzel CJ, Fromm M, Palant CE, Hegel U. Protamine alters structure and conductance of Necturus gallbladder tight junctions without major electrical effects on the apical cell membrane. J Membr Biol 1987; 95:9-20. [PMID: 3560209 DOI: 10.1007/bf01869626] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protamine is a naturally occurring basic protein (pI; 9.7 to 12.0). We have recently reported that protamine dissolved in the mucosal bath (2 to 20 microM), induces about a twofold increase in transepithelial resistance in Necturus gallbladder within 10 min. Conductance decreased concomitantly with cation selectivity. In this leaky epithelium, where greater than 90% of an applied current passes between cells, an increment in resistance of this magnitude suggests a paracellular action a priori. To confirm this, ionic conductance across the apical cell membrane was studied with microelectrodes. Protamine increased transepithelial resistance without changing apical cell membrane voltage or fractional membrane resistance. Variation in extracellular K concentration (6 to 50 mM) caused changes in apical membrane voltage not different from control. To determine if protamine-induced resistance changes were associated with structural alteration of tight junctions, gallbladders were fixed in situ at peak response and analyzed by freeze-fracture electron microscopy. According to a morphometrical analysis, the tight junctional intramembranous domain expands vertically due to incorporation of new strands (fibrils) into the main compact fibrillar meshwork. Since morphologic changes are complete within 10 min, strands are probably recycled into and out of the tight junctional membrane domain possibly by the cytoskeleton either from cytoplasmic vesicles or from intramembranous precursors. Regulation of tight junctional permeability by protamine and other perturbations may constitute a common mechanism by which leaky epithelia regulate transport, and protamine, in concentrations employed in this study, seems reasonably specific for the tight junction.
Collapse
|
4
|
Fromm M, Palant CE, Bentzel CJ, Hegel U. Protamine reversibly decreases paracellular cation permeability in Necturus gallbladder. J Membr Biol 1985; 87:141-50. [PMID: 4078883 DOI: 10.1007/bf01870660] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protamine, a naturally occurring arginine-rich polycationic protein (pI 9.7 to 12), was tested in Necturus gallbladder using a transepithelial AC-impedance technique. Protamine sulfate or hydrochloride (100 micrograms/ml = 20 microM), dissolved in the mucosal bath, increased transepithelial resistance by 89% without affecting the resistance of subepithelial layers. At the same time, transepithelial voltage (psi ms) turned from slightly mucosa-positive values to mucosa-negative values of approximately +1 to -5 mV. The effect of protamine on transepithelial resistance was minimal at concentrations below 5 micrograms/ml but a maximum response was achieved between 10 and 20 micrograms/ml. Resistance started to increase within 1 min and was maximal after 10 min. These effects were not inhibited by serosal ouabain (5 X 10(-4) M) but could be readily reversed by mucosal heparin. The sequence of protamine effect and heparin reversal could be repeated several times in the same gallbladder. Mucosal heparin, a strong negatively charged mucopolysaccharide, or serosal protamine were without effect. Mucosal protamine reversibly decreased the partial ionic conductance of K and Na by a factor of 3, but did not affect Cl conductance. Net water transport from mucosa to serosa was reversibly increased by 60% by protamine. We conclude that protamine reversibly decreases the conductance of the cation-selective pathway through the tight junction. Although this effect is similar to that reported for 2,4,6-triamino-pyrimidinium (TAP), the mechanism of action may differ. We propose that protamine binds to the apical cell membrane and induces a series of intracellular events which leads to a conformational alteration of the tight junction structure resulting in decreased cationic permeability.
Collapse
|
5
|
Lewis SA, Hanrahan JW, Driessche WV. Channels across Epithelial Cell Layers. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1984. [DOI: 10.1016/s0070-2161(08)60441-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Gögelein H, Van Driessche W. Noise analysis of the K+ current through the apical membrane of Necturus gallbladder. J Membr Biol 1981; 63:243-54. [PMID: 6273574 DOI: 10.1007/bf01870985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current noise power spectra of the voltage-channel (V = 0) Necturus gallbladder, exposed to NaCl-Ringer's on both sides contained a relaxation noise component, which overlapped with a 1/f alpha noise component, with alpha being about 2. Substitution of all Na+ by K+ on either the serosal or mucosal side increased the relaxation as well as the 1/f alpha noise component considerably. In Necturus gallbladder both noise components are reduced by addition of 10 mM, 2,4,6-triaminopyrimidine (TAP) or 5 mM BA2+ to the mucosal side, as well as by acidification of the mucosal solution to pH 5 and lower. Five mM of tetraethylammonium (TEA+) added to the mucosal solution, abolished K+ relaxation noise and decreased the 1/f alpha noise component. Applying a Cs+ concentration gradient across the epithelium did not yield relaxation noise. However, if Rb+ was substituted for all Na+ on one side, a Lorentzian noise component appeared in the spectrum. Its plateau was smaller than with KCl-Ringer's on the respective side. These data confirm the existence of fluctuating K+ channels in the apical membrane of the Necturus gallbladder. Furthermore it can be concluded that these channels have the permeability sequence K+ greater than Rb+ greater than Cs+. The inhibition of the fluctuations by mucosal acidification indicates the existence of acidic sites in the channel. The single-channel conductance was estimated to be between 6.5 and 40 pS.
Collapse
|
7
|
Gögelein H, Van Driessche W. Noise analysis of the K+ current through the apical membrane of Necturus gallbladder. J Membr Biol 1981; 60:187-98. [PMID: 6265641 DOI: 10.1007/bf01992557] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current noise power spectra of the voltage-clamped (V = 0) Necturus gallbladder, exposed to NaCl-Ringer's on both sides contained a relaxation noise component, which overlapped with a 1/f alpha noise component, with alpha being about 2. Substitution of all Na+ by K+ on either the serosal or mucosal side increased the relaxation as well as the 1/f alpha noise component considerably. In Necturus gallbladder both noise components are reduced by addition of 10mM 2,4,6-triaminopyrimidine (TAP) or 5 mM of tetraethylammonium (TEA+) added to ification of the mucosal solution to pH 5 and lower. Five mM of tetraethylammonium (TEA+) added to the mucosal solution, abolished K+ relaxation noise and decreased the 1/f alpha noise component. Applying a Cs+ concentration gradient across the epithelium did not yield relaxation noise. However, if Rb+ was substituted for all Na+ on one side, a Lorentzian noise component appeared in the spectrum. Its plateau was smaller than with KCl-Ringer's on the respective side. These data confirm the existence of fluctuating K+ channels in the apical membrane of the Necturus gallbladder. Furthermore it can be concluded that these channels have a permeability sequence K+ greater than Rb+ greater than Cs+. The inhibition of the fluctuations by mucosal acidification indicates the existence of acidic sites in the channel. The single-channel conductance was estimated to be between 6.5 and 40 pS.
Collapse
|
8
|
Bello-Reuss E, Grady TP, Reuss L. Mechanism of the effect of cyanide on cell membrane potentials in Necturus gall-bladder epithelium. J Physiol 1981; 314:343-57. [PMID: 6796674 PMCID: PMC1249438 DOI: 10.1113/jphysiol.1981.sp013712] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
1. Addition of sodium cyanide to the mucosal or the serosal medium bathing the isolated gall-bladder of Necturus maculosus causes hyperpolarization of both apical and basolateral membrane of the epithelial cells. The effect of cyanide is practically immediate, reversible (if exposure is brief), and long-lasting (greater than 30 min). 2. The hyperpolarization is accompanied by: (a) reduction of the equivalent resistance of the cell membranes, as shown by cable analysis and input resistance measurements, and (b) increase of the potassium selectivity of both cell membranes, as evidenced by the effects of external substitutions of potassium for sodium on cell membrane potentials. We conclude that the cyanide-induced hyperpolarization is caused mainly or exclusively by an increase of the potassium permeability of the cell membranes. 3. Addition of the calcium ionophore A23187 (5 microM) to the mucosal medium in the presence of 1 mM-calcium caused similar effects to those produced by cyanide. After either cyanide or A23187, addition of the other agent did not cause further membrane potential changes. 4. Quinine (100 microM, mucosal medium) reduced the potassium permeability of the apical membrane both under control conditions and during exposure to cyanide. 5. We suggest that the cyanide-induced increase of the potassium permeability of the cell membrane is mediated by an elevation of intracellular calcium ion activity, attributable to release from mitochondrial sources.
Collapse
|
9
|
Reuss L, Cheung LY, Grady TP. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol 1981; 59:211-24. [PMID: 7241581 DOI: 10.1007/bf01875426] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Conventional microelectrode techniques were combined with unilateral mucosal ionic substitutions to determine the effects of luminal pH and luminal alkali-earth cation concentrations on apical membrane cation permeability in Necturus gallbladder epithelium. Acidification of the mucosal solution caused reversible depolarization of both cell membranes and increase of transepithelial resistance. Low pH media also caused: (a) reduction of the apical membrane depolarization induced by high K, and (b) increase of the apical membrane hyperpolarization produced by Na replacement with Li or N-Methyl-D-glucamine. These results, in conjunction with estimates of cell membrane conductances, indicate that acidification of the luminal solution produces a reduction of apical membrane K permeability (PK). Addition of alkali earth cations (Mg2+, Ca2+, Sr2+, or Ba2+) produced cell membrane depolarization, increase of relative resistance of the luminal membrane and reduction of the apical membrane potential change produced by a high-K mucosal medium. These results, as those produced by low pH, can be explained by a reduction of apical membrane PK. The effects of Ba2+ on membrane potential and relative apical membrane PK were larger than those of all other four cations at all concentrations tested (1-10 mM). The effect of Sr2+ was significantly larger than those of Mg2+ and Ca2+ at 10 mM, but not different at 5 mM. The reduction of PK produced by mucosal acidification appears to be mediated by: (a) nonspecific titration of membrane fixed negative charges, and (b) an effect of luminal proton activity on the apical K channel. Divalent cations reduce apical membrane PK probably by screening negative surface charges. The larger magnitude of the effects of Ba2+ and Sr2+ can be explained by binding to membrane sites, in the surface or in the K channel, in addition to their screening effect. We suggest that the action of luminal pH on K secretion in some segments of the renal tubule could be mediated in part by this pH-dependent K permeability of the luminal membrane.
Collapse
|
10
|
Gögelein H, Van Driessche W. Capacitive and inductive low frequency impedances of Necturus gallbladder epithelium. Pflugers Arch 1981; 389:105-13. [PMID: 6259582 DOI: 10.1007/bf00582099] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The electrical impedance of Necturus gallbladder epithelium was analysed in the frequency range 0.24 Hz to 6,323 Hz. Under control conditions (NaCl-Ringer's on both sides), the impedance function yields a semicircle with depressed center. When serosal Na+ was replaced by K+, an inductive low frequency (LF) component appeared in the impedance locus. With KCl-Ringer on the mucosal side a second circular arc was observed at frequencies below 1 Hz. The resistive parts of the capacitive and inductive LF components increased after application of TAP+ to the mucosal side. Both LF features were abolished after application of 5 mM TEA+ to the mucosal medium as well as after acidification of the mucosal side. The LF components were depressed by addition of 5 mM Ba2+ to the mucosal solution. As TEA+ blocks apical K+ channels (Van Driessche and Gögelein 1978), it is concluded that the capacitive as well as the inductive LF components are related to transcellular K+ flow. With KCl-Ringer on the mucosal side, mucosa negative potentials increased the equivalent resistance and decreased the equivalent capacitance of the LF impedance. With serosal KCl-Ringer, negative potentials evoked a capacitive component which overlapped with the inductive component observed at open circuit conditions. Positive potentials, however, abolished the capacitive as well as the inductive LF component, elicited by mucosal or serosal KCl-Ringer, respectively. These results demonstrate that serosa to mucosa directed K+ flow causes an inductive LF feature and that mucosa negative potentials elicit a capacitive LF component.
Collapse
|
11
|
Bentzel CJ, Hainau B, Ho S, Hui SW, Edelman A, Anagnostopoulos T, Benedetti EL. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. THE AMERICAN JOURNAL OF PHYSIOLOGY 1980; 239:C75-89. [PMID: 7435552 DOI: 10.1152/ajpcell.1980.239.3.c75] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The significance of the "leaky" tight junction might be understood better if cells of the epithelial monolayer possessed mechanisms to regulate molecular flow through the junction. To test this possibility, Necturus gallbladder, a representative leaky epithelium, was studied before, during, and after mucosal exposure to plant cytokinins and two other microfilament-active drugs, cytochalasin B and phalloidin. Concomitant with morphological changes in microfilaments, cytokinins induced rapid reversible increases in transepithelial resistance and potential difference (PD) and decreases in NaCl dilution potentials, with no change in the ratio of relative cell membrane resistances. Cytochalasin B (0.2-1.2 microM) and phalloidin (0.6-12.7 microM) caused similar changes in transepithelial resistance and PD. When the intramembranous structure of tight junctions was studied by freeze fracture, peak cytokinin-induced increments in transepithelial resistance were associated with more disorder in the strand meshwork resulting in a small increase in tight junction depth, but there was no evidence of de novo strand assembly. These studies suggest that permeability of the tight junction of Necturus gallbladder is subject to rapid reversible modulation, possibly under cytoskeletal control.
Collapse
|
12
|
Degnan KJ, Zadunaisky JA. Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance. J Membr Biol 1980; 55:175-85. [PMID: 7411592 DOI: 10.1007/bf01869459] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The unidirectional Na+, Cl-, and urea fluxes across isolated opercular epithelia from seawater-adapted Fundulus heteroclitus were measured under different experimental conditions. The mean Na+, Cl0, and urea permeabilities were 9.30 x 10(-6) cm . sec-1, 1.24 x 10(-6) cm . sec-1, and 5.05 x 10(-7) cm . sec-1, respectively. The responses of the unidirectional Na+ fluxes and the Cl- influx (mucosa to serosa) to voltage clamping were characteristic of passively moving ions traversing only one rate-limiting barrier. The Na+ conductance varied linearly with, and comprised and mean 54% of, the total tissue ionic conductance. The Cl- influx and the urea fluxes were independent of the tissue conductance. Triaminopyrimidine (TAP) reduced the Na+ fluxes and tissue conductance over 70%, while having no effect on the Cl- influx of urea fluxes. Mucosal Na+ substitution reduced the Na+ permeability 60% and the tissue conductance 76%, but had no effect on the Cl- influx or the urea fluxes. Both the Na+ and Cl- influxes were unaffected by respective serosal substitutions, indicating the lack of any Na+/Na+ and Cl-/Cl- exchange diffusion. The results suggest that the unidirectional Na+ fluxes are simple passive fluxes proceeding extracelluarly (i.e., movement through a cation-selective paracellular shunt). This pathway is dependent on mucosal (external) Na+, independent of serosal (internal) Na+, and may be distinct from the transepithelial Cl- and urea pathways.U
Collapse
|
13
|
Jansen JW, Fleuren-Jakobs AM, De Pont JJ, Bonting SL. Blocking by 2,4,6-triaminopyrimidine of increased tight junction permeability induced by acetylcholine in the pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 598:115-26. [PMID: 6251874 DOI: 10.1016/0005-2736(80)90269-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The permeability of the paracellular pathway in the isolated rabbit pancreas has been studied with the aid of 2,4,6-triaminopyrimidine. 2. Addition of 2,4,6-triaminopyrimidine (1--10 mM) to the bathing medium has no effect on the rate of fluid secretion or on protein, Na+, K+, Ca2+ and sucrose concentrations in the secreted fluid. 3. When 1 x 10(-5) M carbachol is also added to the 2,4,6-triaminopyrimidine-containing bathing medium, there is a marked reduction in the increase of the paracellular permeability for sucrose and Ca2+ found upon addition of carbachol alone. The enzyme secretion, induced by carbachol, is not affected. 4. The minimal concentration of 2,4,6-triaminopyrimidine in the bathing medium required to reach its maximal effect on the paracellular permeability is approx. 0.55 mM at pH 7.4. 5. The effect of 2,4,6-triaminopyrimidine on the paracellular permeability after carbachol stimulation is also present when 2,4,6-triaminopyrimidine is added 5 min after the addition of 1 x 10(-5) M carbachol. 6. 2,4,6-Triaminopyrimidine has no effect on the increases in enzyme secretion and sucrose permeability caused by 1 x 10(-8) pancreozymin C octapeptide. 7. 2,4,6-Triaminopyrimidine appears in the secreted fluid at a concentration of 50% of that in the bathing medium. Upon addition of 1 x 10(5) M carbachol this concentration increases up to 80%. 8. These results indicate that: (a) the increased paracellular permeability upon stimulation with carbachol is not caused by the enzyme secretion as such and (b) addition of 2,4,6-triaminopyrimidine prevents the carbachol-induced increase in permeability of a channel in the tight junction complex.
Collapse
|