Ndisang JF, Jadhav A. Upregulating the heme oxygenase system suppresses left ventricular hypertrophy in adult spontaneously hypertensive rats for 3 months.
J Card Fail 2009;
15:616-28. [PMID:
19700139 DOI:
10.1016/j.cardfail.2009.02.003]
[Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/09/2009] [Accepted: 02/19/2009] [Indexed: 02/09/2023]
Abstract
BACKGROUND
Aldosterone and phospholipase C (PLC) stimulate nuclear factor-kappaB (NF-kappaB) and activating-protein (AP-1), causing fibrosis and hypertrophy. Besides harboring binding sites for NF-kappaB and AP-1, heme oxygenase (HO-1) generates cytoprotective products, including bilirubin and ferritin. The multifaceted interaction between HO-1 and aldosterone-PLC profibrotic axis in cardiac hypertrophy of spontaneously hypertensive rats (SHR) was studied.
METHODS AND RESULTS
HO-1 was induced with hemin or blocked with chromium mesoporphyrin (CrMP). The study groups included: (A) controls (SHR, WKY, and SD), (B) SHR+hemin, (C) SHR+hemin+CrMP, (D) SHR+CrMP, and (E) SHR+vehicle. Histological and morphological/morphometrical, quantitative reverse transcription-polymerase chain reaction, Western blot, enzyme immunoassay, and spectrophotometric assays were used to assess the effect of the HO system on cardiac hypertrophy. Hemin therapy evoked a 3-month enduring cardioprotection in adult SHR by lowering blood pressure, and reducing left-to-right ventricular ratio, left ventricular wall-thickness, and left ventricle-to-body-weight ratio, whereas CrMP exacerbated cardiac fibrosis/hypertrophy. The cardioprotection was accompanied by reduced aldosterone, PLC, inositol-triphosphate, NF-kappaB, AP-1, heme, and 8-isoprostane, a marker of oxidative stress, whereas HO-1, HO activity, cGMP, bilirubin, ferritin, superoxide dismutase, and the total antioxidant capacity were increased. Correspondingly, extracellular matrix/remodeling proteins such as fibronectin, collagen-1, collagen-IV, alongside cardiac histopathological lesions including fibrosis, scarring, muscular-hypertrophy, coronary-arteriolar thickening, and interstitial/perivascular collagen deposition were attenuated.
CONCLUSIONS
Our study unveils sustained cardioprotection by hemin that may have clinical relevance.
Collapse