1
|
Francini E, Orlandoni P, Sparvoli D, Jukic Peladic N, Cardelli M, Recchioni R, Silvi S, Stocchi V, Donati Zeppa S, Procopio AD, Capalbo M, Lattanzio F, Olivieri F, Marchegiani F. Possible Role of Tauroursodeoxycholic Acid (TUDCA) and Antibiotic Administration in Modulating Human Gut Microbiota in Home Enteral Nutrition Therapy for the Elderly: A Case Report. Int J Mol Sci 2024; 25:7115. [PMID: 39000220 PMCID: PMC11240908 DOI: 10.3390/ijms25137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) increases the influx of primary bile acids into the gut. Results obtained on animal models suggested that Firmicutes and Proteobacteria phyla are more resistant to bile acids in rats. As part of a pilot study investigating the role of probiotics supplementation in elderly people with home enteral nutrition (HEN), a case of a 92-year-old woman with HEN is reported in the present study. She lives in a nursing home and suffers from Alzheimer's disease (AD); the patient had been prescribed TUDCA for lithiasis cholangitis. The aim of this case report is therefore to investigate whether long-term TUDCA administration may play a role in altering the patient's gut microbiota (GM) and the impact of an antibiotic therapy on the diversity of microbial species. Using next generation sequencing (NGS) analysis of the bacterial 16S ribosomal RNA (rRNA) gene a dominant shift toward Firmicutes and a remodeling in Proteobacteria abundance was observed in the woman's gut microbiota. Considering the patient's age, health status and type of diet, we would have expected to find a GM with a prevalence of Bacteroidetes phylum. This represents the first study investigating the possible TUDCA's effect on human GM.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| | - Paolo Orlandoni
- Clinical Nutrition, IRCCS INRCA, 60127 Ancona, Italy; (P.O.); (D.S.); (N.J.P.)
| | - Debora Sparvoli
- Clinical Nutrition, IRCCS INRCA, 60127 Ancona, Italy; (P.O.); (D.S.); (N.J.P.)
| | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (M.C.); (F.O.)
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, 00166 Rome, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Maria Capalbo
- General Direction, IRCCS INRCA, 60124 Ancona, Italy;
| | | | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (M.C.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| |
Collapse
|
2
|
Pimenta AI, Bernardino RM, Pereira IAC. Role of sulfidogenic members of the gut microbiota in human disease. Adv Microb Physiol 2024; 85:145-200. [PMID: 39059820 DOI: 10.1016/bs.ampbs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.
Collapse
Affiliation(s)
- Andreia I Pimenta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel M Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
3
|
Felber J, Gross B, Rahrisch A, Waltersbacher E, Trips E, Schröttner P, Fitze G, Schultz J. Bacterial pathogens in pediatric appendicitis: a comprehensive retrospective study. Front Cell Infect Microbiol 2023; 13:1027769. [PMID: 37228669 PMCID: PMC10205019 DOI: 10.3389/fcimb.2023.1027769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/30/2023] [Indexed: 05/27/2023] Open
Abstract
Background Appendicitis is a frequent condition, with peak incidences in the second decade of life. Its pathogenesis is under debate, but bacterial infections are crucial, and antibiotic treatment remains essential. Rare bacteria are accused of causing complications, and various calculated antibiotics are propagated, yet there is no comprehensive microbiological analysis of pediatric appendicitis. Here we review different pre-analytic pathways, identify rare and common bacterial pathogens and their antibiotic resistances, correlate clinical courses, and evaluate standard calculated antibiotics in a large pediatric cohort. Method We reviewed 579 patient records and microbiological results of intraoperative swabs in standard Amies agar media or fluid samples after appendectomies for appendicitis between May 2011 and April 2019. Bacteria were cultured and identified via VITEK 2 or MALDI-TOF MS. Minimal inhibitory concentrations were reevaluated according to EUCAST 2022. Results were correlated to clinical courses. Results Of 579 analyzed patients, in 372 patients we got 1330 bacterial growths with resistograms. 1259 times, bacteria could be identified to species level. 102 different bacteria could be cultivated. 49% of catarrhal and 52% of phlegmonous appendices resulted in bacterial growth. In gangrenous appendicitis, only 38% remained sterile, while this number reduced to 4% after perforation. Many fluid samples remained sterile even when unsterile swabs had been taken simultaneously. 40 common enteral genera were responsible for 76.5% of bacterial identifications in 96.8% of patients. However, 69 rare bacteria were found in 187 patients without specifically elevated risk for complications. Conclusion Amies agar gel swabs performed superior to fluid samples and should be a standard in appendectomies. Even catarrhal appendices were only sterile in 51%, which is interesting in view of a possible viral cause. According to our resistograms, the best in vitro antibiotic was imipenem with 88.4% susceptible strains, followed by piperacillin-tazobactam, cefuroxime with metronidazole, and ampicillin-sulbactam to which only 21.6% of bacteria were susceptible. Bacterial growths and higher resistances correlate to an elevated risk of complications. Rare bacteria are found in many patients, but there is no specific consequence regarding antibiotic susceptibility, clinical course, or complications. Prospective, comprehensive studies are needed to further elicit pediatric appendicitis microbiology and antibiotic treatment.
Collapse
Affiliation(s)
- Julia Felber
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Benedikt Gross
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Arend Rahrisch
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Eric Waltersbacher
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Evelyn Trips
- Coordination Centre for Clinical Trials, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Percy Schröttner
- Institute for Microbiology and Virology, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Jurek Schultz
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| |
Collapse
|
4
|
Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, Wu B, Zou T, Luo X, Zhang X, Zeng Y, Liu Z, Zhou Z, Yue Z, Ren Y, Li Z, Su Q, Xu P. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther 2022; 29:140-157. [PMID: 36284437 PMCID: PMC9804059 DOI: 10.1111/cns.13990] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Recent advances have highlighted the relationships between gut dysbiosis and Parkinson's disease (PD). Microbiota transplantation from PD patients to mice can induce increased alpha-synuclein-mediated motor deficits. Human studies have identified differences in the gut microbiota of PD patients compared to healthy controls. We undertook a systematic review to evaluate the available evidence for the involvement of gut bacteria in the etiology of PD. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched from inception until June 2021 to identify human case-control studies that investigated relationships between PD and microbiota quantified from feces. We evaluated the resulting studies focusing on bacterial taxa that were different between PD patients and healthy controls. RESULTS Twenty-six studies were found in which 53 microbial families and 98 genera exhibited differences between patients with PD and healthy controls. The genera identified by more than two studies as increased in PD were Bifidobacterium, Alistipes, Christensenella, Enterococcus, Oscillospira, Bilophila, Desulfovibrio, Escherichia/Shigella, and Akkermansia, while Prevotella, Blautia, Faecalibacterium, Fusicatenibacter, and Haemophilus had three or more reports of being lower in PD patients. More than one report demonstrated that Bacteroides, Odoribacter, Parabacteroides, Butyricicoccus, Butyrivibrio, Clostridium, Coprococcus, Lachnospira, Lactobacillus, Megasphaera, Phascolarctobacterium, Roseburia, Ruminococcus, Streptococcus, and Klebsiella were altered in both directions. CONCLUSION Our review shows that the involvement of the gut microbiome in the etiology of PD may involve alterations of short-chain fatty acids (SCFAs)-producing bacteria and an increase in putative gut pathobionts. SCFAs-producing bacteria may vary above or below an "optimal range," causing imbalances. Considering that Bifidobacterium, Lactobacillus, and Akkermansia are beneficial for human health, increased Bifidobacterium and Lactobacillus in the PD gut microbiome may be associated with PD medications, especially COMT inhibitors, while a high level of Akkermansia may be associated with aging.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Hongfeng Liang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yingyu Hu
- Hospital Administration OfficeSouthern Medical UniversityGuangzhouChina
| | - Lin Lu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chunye Zheng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yuzhen Fan
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Bin Wu
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Tao Zou
- Chronic Disease Management OutpatientThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xiaodong Luo
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xinchun Zhang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yan Zeng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Ziyan Liu
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhicheng Zhou
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yi Ren
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFloridaUSA
| | - Zhuo Li
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Qiaozhen Su
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Zhang P, Liu B, Zheng W, Chen Y, Wu Z, Lu Y, Ma J, Lu W, Zheng M, Wu W, Meng Z, Wu J, Zheng Y, Zhang X, Zhang S, Huang Y. Pulmonary Microbial Composition in Sepsis-Induced Acute Respiratory Distress Syndrome. Front Mol Biosci 2022; 9:862570. [PMID: 35813824 PMCID: PMC9262094 DOI: 10.3389/fmolb.2022.862570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is an unresolved challenge in the field of respiratory and critical care, and the changes in the lung microbiome during the development of ARDS and their clinical diagnostic value remain unclear. This study aimed to explore the role of the lung microbiome in disease progression in patients with sepsis-induced ARDS and potential therapeutic targets.Methods: Patients with ARDS were divided into two groups according to the initial site of infection, intrapulmonary infection (ARDSp, 111 cases) and extrapulmonary infection (ARDSexp, 45 cases), and a total of 28 patients with mild pulmonary infections were enrolled as the control group. In this study, we sequenced the DNA in the bronchoalveolar lavage fluid collected from patients using metagenomic next-generation sequencing (mNGS) to analyze the changes in the lung microbiome in patients with different infectious site and prognosis and before and after antibiotic treatment.Results: The Shannon–Wiener index indicated a statistically significant reduction in microbial diversity in the ARDSp group compared with the ARDSexp and control groups. The ARDSp group was characterized by a reduction in microbiome diversity, mainly in the normal microbes of the lung, whereas the ARDSexp group was characterized by an increase in microbiome diversity, mainly in conditionally pathogenic bacteria and intestinal microbes. Further analysis showed that an increase in Bilophila is a potential risk factor for death in ARDSexp. An increase in Escherichia coli, Staphylococcus aureus, Candida albicans, enteric microbes, or conditional pathogens may be risk factors for death in ARDSp. In contrast, Hydrobacter may be a protective factor in ARDSp.Conclusion: Different initial sites of infection and prognoses are likely to affect the composition and diversity of the pulmonary microbiome in patients with septic ARDS. This study provides insights into disease development and exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Baoyi Liu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Weihao Zheng
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Yantang Chen
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Zhentao Wu
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Yuting Lu
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Jie Ma
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Mingzhu Zheng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Wanting Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Zijie Meng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Jinhua Wu
- Department of Clinical Laboratory, Jiangmen Central Hospital, Jiangmen, China
| | - Yan Zheng
- Department of Research and Development, Guangdong Research Institute of Genetic Diagnostic and Engineering Technologies for Thalassemia, Hybribio Limited, Guangzhou, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Xin Zhang, ; Shuang Zhang, ; Yanming Huang,
| | - Shuang Zhang
- Department of Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
- *Correspondence: Xin Zhang, ; Shuang Zhang, ; Yanming Huang,
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Department of Respiratory and Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, China
- *Correspondence: Xin Zhang, ; Shuang Zhang, ; Yanming Huang,
| |
Collapse
|
6
|
Burkhardt W, Rausch T, Klopfleisch R, Blaut M, Braune A. Impact of dietary sulfolipid-derived sulfoquinovose on gut microbiota composition and inflammatory status of colitis-prone interleukin-10-deficient mice. Int J Med Microbiol 2021; 311:151494. [PMID: 33711649 DOI: 10.1016/j.ijmm.2021.151494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.
Collapse
Affiliation(s)
- Wiebke Burkhardt
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Theresa Rausch
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Michael Blaut
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
7
|
Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 2020; 8:microorganisms8111638. [PMID: 33114017 PMCID: PMC7690730 DOI: 10.3390/microorganisms8111638] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
A diet high in non-digestible carbohydrates is known to promote health, in part through its effect on the gut microbiome. While substantially proven for healthy individuals, these effects are more ambiguous in subjects with intestinal diseases. At the same time, a diet low in these fermentable carbohydrates, the low FODMAP (acronym for Fermentable Oligo-, Di-, Mono-saccharides, And Polyols) diet, is gaining popularity as a treatment option for symptom relief in irritable bowel syndrome and inflammatory bowel disease. There are, however, several indications that this diet induces effects opposite to those of prebiotic supplementation, resulting in gut microbiome changes that might be detrimental. Here, we provide a systematic review of the effects of low and high FODMAP diets on human gastrointestinal microbiota composition in adults with intestinal diseases, through literature screening using the databases PubMed, Embase, and Web of Science. We summarize study findings on dietary impact in patients, including the effect on bacterial taxa and diversity. In general, similar to healthy subjects, restricting non-digestible carbohydrate intake in patients with intestinal diseases has opposite effects compared to prebiotic supplementation, causing a reduction in bifidobacteria and an increase in bacteria associated with dysbiosis. Future studies should focus on assessing whether the induced microbial changes persist over time and have adverse effects on long-term colonic health.
Collapse
|
8
|
Videvall E, Song SJ, Bensch HM, Strandh M, Engelbrecht A, Serfontein N, Hellgren O, Olivier A, Cloete S, Knight R, Cornwallis CK. Early-life gut dysbiosis linked to juvenile mortality in ostriches. MICROBIOME 2020; 8:147. [PMID: 33046114 PMCID: PMC7552511 DOI: 10.1186/s40168-020-00925-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/20/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health. METHODS Here, we examine the changes that occur in the microbiome during dysbiosis in different parts of the gastrointestinal tract in a long-lived bird with high juvenile mortality, the ostrich (Struthio camelus). We evaluated the 16S rRNA gene composition of the ileum, cecum, and colon of 68 individuals that died of suspected enterocolitis during the first 3 months of life (diseased individuals), and of 50 healthy individuals that were euthanized as age-matched controls. We combined these data with longitudinal environmental and fecal sampling to identify potential sources of pathogenic bacteria and to unravel at which stage of development dysbiosis-associated bacteria emerge. RESULTS Diseased individuals had drastically lower microbial alpha diversity and differed substantially in their microbial beta diversity from control individuals in all three regions of the gastrointestinal tract. The clear relationship between low diversity and disease was consistent across all ages in the ileum, but decreased with age in the cecum and colon. Several taxa were associated with mortality (Enterobacteriaceae, Peptostreptococcaceae, Porphyromonadaceae, Clostridium), while others were associated with health (Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Turicibacter, Roseburia). Environmental samples showed no evidence of dysbiosis-associated bacteria being present in either the food, water, or soil substrate. Instead, the repeated fecal sampling showed that pathobionts were already present shortly after hatching and proliferated in individuals with low microbial diversity, resulting in high mortality several weeks later. CONCLUSIONS Identifying the origins of pathobionts in neonates and the factors that subsequently influence the establishment of diverse gut microbiota may be key to understanding dysbiosis and host development. Video Abstract.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Biology, Lund University, Lund, Sweden.
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA.
| | - Se Jin Song
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Maria Strandh
- Department of Biology, Lund University, Lund, Sweden
| | - Anel Engelbrecht
- Western Cape Department of Agriculture, Directorate Animal Sciences, Elsenburg, South Africa
| | - Naomi Serfontein
- Western Cape Agricultural Research Trust, Elsenburg, South Africa
| | - Olof Hellgren
- Department of Biology, Lund University, Lund, Sweden
| | - Adriaan Olivier
- South African Ostrich Business Chamber, Oudtshoorn, South Africa
| | - Schalk Cloete
- Western Cape Department of Agriculture, Directorate Animal Sciences, Elsenburg, South Africa
- Department of Animal Sciences, Stellenbosch University, Matieland, South Africa
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
9
|
Narayan M, Juprasert J, Finn C, Barie PS. Recurrent Necrotizing Soft Tissue Infections with Atypical Pathogens after Injection Drug Abuse: Another Manifestation of the Opioid Crisis. Surg Infect (Larchmt) 2020; 21:411-415. [PMID: 31910356 DOI: 10.1089/sur.2019.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: The United States is in the midst of an opioid crisis. Injection drug use is a major risk factor for necrotizing soft tissue infections (NSTI) by introducing bacteria into the soft tissues. Repetitive infection and atypical pathogens may be tangible manifestations of the opioid crisis. Methods: We describe recidivism in two cases of NSTI involving opioid abuse and atypical pathogens at a single institution and review pertinent international literature. Results: Repetitive NSTI is rare. Patients with chronic injection drug use, however, may be at particular risk of repetitive NSTI and infections with atypical organisms. Conclusions: Care providers must have a heightened awareness of infections with atypical pathogens and risk of repetitive infection in patients with injection drug use. Aggressive surgical management and antibiotic coverage tailored to culture and susceptibility data are necessary for a successful short-term outcome. A successful long-term outcome mandates identification and management of co-existent behavioral health issues.
Collapse
Affiliation(s)
- Mayur Narayan
- Department of Surgery, Division of Trauma, Burns, Acute and Critical Care, Division of Medical Ethics, Weill Cornell Medicine, New York, New York, USA
| | - Jackly Juprasert
- Department of Surgery, Division of Trauma, Burns, Acute and Critical Care, Division of Medical Ethics, Weill Cornell Medicine, New York, New York, USA
| | - Caitlin Finn
- Department of Surgery, Division of Trauma, Burns, Acute and Critical Care, Division of Medical Ethics, Weill Cornell Medicine, New York, New York, USA
| | - Philip S Barie
- Department of Surgery, Division of Trauma, Burns, Acute and Critical Care, Division of Medical Ethics, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Division of Medical Ethics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Tabatabaei M, Dehvari A, Geramizadeh B, Niakan MH. Probable Role of Bilophila wadsworthia in Appendicle Infection. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Arnold MG, Gokulan K, Doerge DR, Vanlandingham M, Cerniglia CE, Khare S. A single or short time repeated arsenic oral exposure in mice impacts mRNA expression for signaling and immunity related genes in the gut. Food Chem Toxicol 2019; 132:110597. [PMID: 31233874 DOI: 10.1016/j.fct.2019.110597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Arsenic is prevalent in contaminated drinking water and affects more than 140 million people in 50 countries. While the wide-ranging effects of arsenic on neurological development and cancer draw the majority of concern, arsenic's effects on the gut mucosa-associated immune system are often overlooked. In this study, we show that 24 h after a single dose [low dose (50 μg/kg bw), medium dose (100 μg/kg bw) or high dose (200 μg/kg bw)] of arsenic by oral gavage, mice show significantly reduced gut mucosa-associated mRNA expression for the key genes involved in the signaling pathways central to immune responses, such as Nuclear factor κB (NFκB), Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38 and Myeloid differentiation protein 88-dependent (Myd88) pathways. Additionally, mRNA expression of apoptosis, inflammasomes and inflammatory response genes are significantly downregulated in the animals exposed to arsenic. Comparisons of time-dependent effects (24 h vs 48 h) from low dose arsenic exposed animals showed a significant shift in expression of Myd88 alone, suggesting that the down regulation was sustained for the key genes/signaling pathway. An extended eight-day exposure to arsenic showed a decreased state of immune preparedness, though not as diminished as seen in the single dose exposure.
Collapse
Affiliation(s)
- Matthew G Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
12
|
Zuo K, Li J, Li K, Hu C, Gao Y, Chen M, Hu R, Liu Y, Chi H, Wang H, Qin Y, Liu X, Li S, Cai J, Zhong J, Yang X. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 2019; 8:giz058. [PMID: 31149718 PMCID: PMC6543127 DOI: 10.1093/gigascience/giz058] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/05/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND With the establishment of the heart-gut axis concept, accumulating studies suggest that the gut microbiome plays an important role in the pathogenesis of cardiovascular diseases. Yet, little evidence has been reported in characterizing the gut microbiota shift in atrial fibrillation. METHODS We include the result of the global alterations that occur in the intestinal microbiota in a cohort of 50 patients with atrial fibrillation and 50 matched controls based on a strategy of metagenomic and metabolomic analyses. RESULTS The alterations include a dramatic elevation in microbial diversity and a specific perturbation of gut microbiota composition. Overgrowth of Ruminococcus, Streptococcus, and Enterococcus, as well as reduction of Faecalibacterium, Alistipes, Oscillibacter, and Bilophila were detected in patients with atrial fibrillation. A gut microbial function imbalance and correlated metabolic pattern changes were observed with atrial fibrillation in both fecal and serum samples. The differential gut microbiome signatures could be used to identify patients with atrial fibrillation. CONCLUSIONS Our findings characterize the disordered gut microbiota and microbial metabolite profiles in atrial fibrillation. Further research could determine whether intervention strategies targeting intestinal microbiome composition might be useful to counteract the progression of atrial fibrillation.
Collapse
Affiliation(s)
- Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Kuibao Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chaowei Hu
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yuanfeng Gao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Roumu Hu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ye Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hongjie Chi
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hongjiang Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yanwen Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shichao Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
13
|
|
14
|
Feng Z, Long W, Hao B, Ding D, Ma X, Zhao L, Pang X. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut Pathog 2017; 9:59. [PMID: 29090023 PMCID: PMC5657053 DOI: 10.1186/s13099-017-0208-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Bilophila wadsworthia is a major member of sulfidogenic bacteria in human gut, it was originally recovered from different clinical specimens of intra-abdominal infections and recently was reported potentially linked to different chronic metabolic disorders. However, there is still insufficient understanding on its detailed function and mechanism to date. METHODS A B. wadsworthia strain was isolated from fresh feces of a latent autoimmune diabetes in adults patient and we investigated its pathogenicity by oral administration to specific-pathogen-free mice. Tissue samples and serum were collected after sacrifice. Stool samples were collected at different time points to profile the gut microbiota. RESULTS Bilophila wadsworthia infection resulted in the reduction of body weight and fat mass, apparent hepatosplenomegaly and elevated serum inflammatory factors, including serum amyloid A and interleukin-6, while without significant change of the overall gut microbiota structure. CONCLUSIONS These results demonstrated that higher amount of B. wadsworthia caused systemic inflammatory response in SPF mice, which adds new evidence to the pathogenicity of this bacterium and implied its potential role to the chronic inflammation related metabolic diseases like diabetes.
Collapse
Affiliation(s)
- Zhou Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Wenmin Long
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Binhan Hao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Ding Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Xiaoqing Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| |
Collapse
|
15
|
Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. Br J Nutr 2017; 117:1312-1322. [PMID: 28558854 DOI: 10.1017/s0007114517000885] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Probiotic yogurt and milk supplemented with probiotics have been investigated for their role in 'low-grade' inflammation but evidence for their efficacy is inconclusive. This study explores the impact of probiotic yogurt on metabolic and inflammatory biomarkers, with a parallel study of gut microbiota dynamics. The randomised cross-over study was conducted in fourteen healthy, young men to test probiotic yogurt compared with milk acidified with 2 % d-(+)-glucono-δ-lactone during a 2-week intervention (400 g/d). Fasting assessments, a high-fat meal test (HFM) and microbiota analyses were used to assess the intervention effects. Baseline assessments for the HFM were carried out after a run-in during which normal milk was provided. No significant differences in the inflammatory response to the HFM were observed after probiotic yogurt compared with acidified milk intake; however, both products were associated with significant reductions in the inflammatory response to the HFM compared with the baseline tests (assessed by IL6, TNFα and chemokine ligand 5) (P<0·001). These observations were accompanied by significant changes in microbiota taxa, including decreased abundance of Bilophila wadsworthia after acidified milk (log 2-fold-change (FC)=-1·5, P adj=0·05) and probiotic yogurt intake (FC=-1·3, P adj=0·03), increased abundance of Bifidobacterium species after acidified milk intake (FC=1·4, P adj=0·04) and detection of Lactobacillus delbrueckii spp. bulgaricus (FC=7·0, P adj<0·01) and Streptococcus salivarius spp. thermophilus (FC=6·0, P adj<0·01) after probiotic yogurt intake. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation that is associated with a HFM while inducing distinct changes in the gut microbiota of healthy men. These observations could be relevant for dietary treatments that target 'low-grade' inflammation.
Collapse
|
16
|
Fecal microbial characterization of hospitalized patients with suspected infectious diarrhea shows significant dysbiosis. Sci Rep 2017; 7:1088. [PMID: 28439072 PMCID: PMC5430810 DOI: 10.1038/s41598-017-01217-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Hospitalized patients are at increased risk for acquiring healthcare-associated infections (HAIs) and inadequate nutrition. The human intestinal microbiota plays vital functions in nutrient supply and protection from pathogens, yet characterization of the microbiota of hospitalized patients is lacking. We used 16S rRNA amplicon sequencing to characterize the global pattern of microbial composition of fecal samples from 196 hospitalized patients with suspected infectious diarrhea in comparison to healthy, non-hospitalized subjects (n = 881), and to traditional culture results. We show that hospitalized patients have a significant rise in α-diversity (richness within sample) from birth to <4 years of age, which continues up to the second decade of life. Additionally, we noted a profoundly significant increase in taxa from Proteobacteria phylum in comparison to healthy subjects. Finally, although more than 60% of hospitalized samples had a greater than 10% abundance of Proteobacteria, there were only 19/196 (10%) positive cultures for Campylobacter, Salmonella, or Shigella entero-pathogens in traditional culturing methods. As hospitalized patients have increased risk for HAIs and inadequate nutrition, our data support the consideration of nutritional and/or microbial modification in this population.
Collapse
|
17
|
Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metab Brain Dis 2017; 32:1-17. [PMID: 27709426 DOI: 10.1007/s11011-016-9917-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.
Collapse
Affiliation(s)
- Cicely Proctor
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
18
|
Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. NUTRITION AND HEALTHY AGING 2016; 4:3-16. [PMID: 28035338 PMCID: PMC5166512 DOI: 10.3233/nha-150002] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Parizad Babaei
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Abstract
Background: Hidradenitis suppurativa is a clinically defined disease that causes considerable morbidity for patients. The results of recent studies, which have increased the understanding of this disease, are reviewed. Objective: The epidemiology, risk factors, pathogenesis, and treatment of this disease are summarized to help clinicians with practical patient management. Conclusion: Hidradenitis suppurativa remains a clinical challenge to patients and physicians alike. Physicians should be familiar with the impact this disease has on the patient and with the range of treatments available. Use of simple incisions as treatment is strongly discouraged. Additional pathogenic as well as therapeutic studies are necessary.
Collapse
Affiliation(s)
- Gregor B. E. Jemec
- Division of Dermatology, Department of Medicine, Roskilde Hospital, Roskilde, Denmark
| |
Collapse
|
20
|
Abstract
Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Roles of Sphincter of Oddi Laxity in Bile Duct Microenvironment in Patients with Cholangiolithiasis: From the Perspective of the Microbiome and Metabolome. J Am Coll Surg 2015; 222:269-280.e10. [PMID: 26922601 DOI: 10.1016/j.jamcollsurg.2015.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bile duct microenvironment plays several key roles in cholangiolithiasis occurrence. Sphincter of Oddi laxity (SOL) is associated with cholangiolithiasis, probably due to enhanced reflux of intestinal contents that changes the microenvironment. However, the microenvironment has not been investigated comprehensively. STUDY DESIGN Patients with cholangiolithiasis were consecutively recruited and their bile was collected intraoperatively for high-throughput experiments. Pyrosequencing of 16S ribosomal RNA gene was performed to characterize the microbiota in the bile. A liquid chromatography mass spectrometry-based method was used to profile bile composition. Clinical manifestation, microbiome, and bile composition were compared between patients with and without SOL. RESULTS Eighteen patients with SOL and 27 patients without SOL were finally included. Patients with SOL showed more severe inflammation. Bacteria in the bile duct were overwhelmingly aerobes and facultative anaerobes. Proteobacteria and Firmicutes were the most widespread phylotypes, especially Enterobacteriaceae. Compared with those without SOL, patients with SOL possessed more varied microbiota. In the SOL group, pathobionts, such as Bilophila and Shewanella algae had richer communities, and harmless bacteria were reduced. Metabolomics analysis showed the differences in bile composition between groups were mainly distributed in lipids and bile acids. Particularly, the increased abundance of Bilophila involved in taurine metabolism was associated with reduced contents of taurine derivatives in the bile of patients with SOL. CONCLUSIONS A bile duct microenvironment with more severe bacterial infection and stronger lithogenicity was found in patients with SOL. The findings suggest a possible mechanism of cholangiolithiasis and provide the basis for future strategies for prevention of cholangiolithiasis recurrence.
Collapse
|
22
|
da Silva SM, Amaral C, Neves SS, Santos C, Pimentel C, Rodrigues-Pousada C. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress. FEBS Open Bio 2015; 5:594-604. [PMID: 26273559 PMCID: PMC4534486 DOI: 10.1016/j.fob.2015.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/01/2015] [Indexed: 01/12/2023] Open
Abstract
Desulfovibrio gigas genome encodes two HcpR paralogs, HcpR1 and HcpR2. Cells lacking HcpR1 are less tolerant to NO. HcpR1 regulates the expression of several genes related to nitrogen metabolism. Phylogenetic analyses indicate that the presence of HcpR paralogs is a common finding among Desulfovibrio species.
Desulfovibrio gigas belongs to the group of sulfate reducing bacteria (SRB). These ubiquitous and metabolically versatile microorganisms are often exposed to reactive nitrogen species (RNS). Nonetheless, the mechanisms and regulatory elements involved in nitrosative stress protection are still poorly understood. The transcription factor HcpR has emerged as a putative regulator of nitrosative stress response among anaerobic bacteria. HcpR is known to orchestrate the expression of the hybrid cluster protein gene, hcp, proposed to be involved in cellular defense against RNS. According to phylogenetic analyses, the occurrence of hcpR paralog genes is a common feature among several Desulfovibrio species. Within the D. gigas genome we have identified two HcpR-related sequences. One of these sequences, hcpR1, was found in the close vicinity of the hcp gene and this finding prompted us to proceed with its functional characterization. We observed that the growth of a D. gigas strain lacking hcpR1 is severely impaired under nitrosative stress. An in silico search revealed several putative targets of HcpR1 that were experimentally validated. The fact that HcpR1 regulates several genes encoding proteins involved in nitrite and nitrate metabolism, together with the sensitive growth phenotype to NO displayed by an hcpR1 mutant strain, strongly supports a relevant role of this factor under nitrosative stress. Moreover, the finding that several Desulfovibrio species possess HcpR paralogs, which have been transmitted vertically in the evolution and diversification of the genus, suggests that these sequences may confer adaptive or survival advantage to these organisms, possibly by increasing their tolerance to nitrosative stress.
Collapse
Key Words
- BI, Bayesian inference
- BS, bootstrap
- CRP/FNR, cAMP receptor protein/fumarate and nitrate reductase regulatory protein
- Desulfovibrio
- Frdx, ferredoxin
- GSNO, S-nitrosoglutathione
- HGT, horizontal gene transfer
- Hcp, hybrid cluster protein
- HcpR
- ML, maximum likelihood
- MP, maximum parsimony
- Molecular phylogeny
- NO, nitric oxide
- Nitrosative stress
- PP, posterior probability
- RNS, reactive nitrogen species
- ROO, rubredoxin oxygen reductase
- SRB, sulfate reducing bacteria
- Sulfate reducing bacteria
- Transcription regulation
Collapse
Affiliation(s)
- Sofia M da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Susana S Neves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
23
|
Yang I, Eibach D, Kops F, Brenneke B, Woltemate S, Schulze J, Bleich A, Gruber AD, Muthupalani S, Fox JG, Josenhans C, Suerbaum S. Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticus-induced colitis. PLoS One 2013; 8:e70783. [PMID: 23951007 PMCID: PMC3739778 DOI: 10.1371/journal.pone.0070783] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 12/26/2022] Open
Abstract
The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.
Collapse
Affiliation(s)
- Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Daniel Eibach
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Friederike Kops
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Birgit Brenneke
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Jessika Schulze
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- * E-mail:
| |
Collapse
|
24
|
Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 2012; 3:448. [PMID: 23226130 PMCID: PMC3508456 DOI: 10.3389/fphys.2012.00448] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022] Open
Abstract
Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary amino acids and host mucins) origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria (SRB), which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to SRB or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases (IBDs) and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the SRB. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.
Collapse
Affiliation(s)
- Franck Carbonero
- Department of Animal Sciences, University of Illinois Urbana, IL, USA
| | | | | | | |
Collapse
|
25
|
Gaston MA, Jiang R, Krzycki JA. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 2011; 14:342-9. [PMID: 21550296 DOI: 10.1016/j.mib.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/01/2011] [Accepted: 04/06/2011] [Indexed: 01/14/2023]
Abstract
In Methanosarcina spp., amber codons in methylamine methyltransferase genes are translated as the 22nd amino acid, pyrrolysine. The responsible pyl genes plus amber-codon containing methyltransferase genes have been identified in four archaeal and five bacterial genera, including one human pathogen. In Escherichia coli, the recombinant pylBCD gene products biosynthesize pyrrolysine from two molecules of lysine and the pylTS gene products direct pyrrolysine incorporation into protein. In the proposed biosynthetic pathway, PylB forms methylornithine from lysine, which is joined to another lysine by PylC, and oxidized to pyrrolysine by PylD. Structures of the catalytic domain of pyrrolysyl-tRNA synthetase (archaeal PylS or bacterial PylSc) revealed binding sites for tRNAPyl and pyrrolysine. PylS and tRNAPyl are now being exploited as an orthogonal pair in recombinant systems for introduction of useful modified amino acids into proteins.
Collapse
Affiliation(s)
- Marsha A Gaston
- Department of Microbiology, 484 West 12th Avenue, The Ohio State University, Columbus, OH 43210, United States
| | | | | |
Collapse
|
26
|
Avidan O, Kaltageser E, Pechatnikov I, Wexler HM, Shainskaya A, Nitzan Y. Isolation and characterization of porins from Desulfovibrio piger and Bilophila wadsworthia: structure and gene sequencing. Arch Microbiol 2008; 190:641-50. [PMID: 18709355 DOI: 10.1007/s00203-008-0416-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 06/22/2008] [Accepted: 07/22/2008] [Indexed: 02/07/2023]
Abstract
The outer membrane proteins of Desulfovibrio piger and Bilophila wadsworthia (Omp-DP and Omp-BW, respectively) and the genes encoding them (omp-DP and omp-BW) were isolated and characterized. Native Omp-DP and Omp-BW form a trimeric structure of approximately 120 kDa. These proteins disaggregated into monomers with a molecular weight of approximately 53 kDa after heating at 95 degrees C for 10 min. The pore-forming abilities of these oligomeric proteins demonstrated that they form small nonspecific channels with an exclusion limit of 260-300 Da. The omp-DP and omp-BW genes were cloned and sequenced. Sequence analyses revealed an open reading frame of 1,512 bp for omp-DP and 1,440 bp for omp-BW. The mature Omp-DP protein consisted of 480 amino acids and had a calculated MW of 53,290 Da. The mature Omp-BW protein consisted of 456 amino acids and had a calculated MW of 50.050 Da. Alignment of Omp-DP with Omp-BW revealed 54% homology, whereas alignment with other known porins showed a low level of homology. Analysis of the secondary structures indicated that both proteins span the outer membrane 18 times with amphipathic beta-strands. This research presents porins which were isolated and characterized for the first time from bacteria belonging to the Desulfovibrionaceae family.
Collapse
Affiliation(s)
- Ofir Avidan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Hydrogen as an energy source for the human pathogen Bilophila wadsworthia. Antonie van Leeuwenhoek 2007; 93:381-90. [PMID: 18066702 DOI: 10.1007/s10482-007-9215-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/29/2007] [Indexed: 02/08/2023]
Abstract
The gram-negative anaerobic gut bacterium Bilophila wadsworthia is the third most common isolate in perforated and gangrenous appendicitis, being also found in a variety of other infections. This organism performs a unique kind of anaerobic respiration in which taurine, a major organic solute in mammals, is used as a source of sulphite that serves as terminal acceptor for the electron transport chain. We show here that molecular hydrogen, one of the major products of fermentative bacteria in the colon, is an excellent growth substrate for B. wadsworthia. We have quantified the enzymatic activities associated with the oxidation of H(2), formate and pyruvate for cells obtained in different growth conditions. The cell extracts present high levels of hydrogenase activity, and up to five different hydrogenases can be expressed by this organism. One of the hydrogenases appears to be constitutive, whereas the others show differential expression in different growth conditions. Two of the hydrogenases are soluble and are recognised by antibodies against a [FeFe] hydrogenase of a sulphate reducing bacterium. One of these hydrogenases is specifically induced during fermentative growth on pyruvate. Another two hydrogenases are membrane-bound and show increased expression in cells grown with hydrogen. Further work should be carried out to reveal whether oxidation of hydrogen contributes to the virulence of B. wadsworthia.
Collapse
|
28
|
Baron EJ. Bilophila wadsworthia: a unique Gram-negative anaerobic rod. Anaerobe 2007; 3:83-6. [PMID: 16887567 DOI: 10.1006/anae.1997.0075] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/1996] [Accepted: 02/21/1997] [Indexed: 02/06/2023]
Abstract
Although comprising less than 0.01% of the normal human gastrointestinal microbiota, Bilophila wadsworthia is the third most common anaerobe recovered from clinical material obtained from patients with perforated and gangrenous appendicitis. Since its discovery in 1988, B. wadsworthia has been recovered from clinical specimens associated with a variety of infections, including sepsis, liver abscesses, cholecystitis, Fournier's gangrene, soft tissue abscesses, empyema, osteomyelitis, Bartholinitis, and hidradenitis suppurativa. In addition, it has been found in the saliva and vaginal fluids of asymptomatic adults and even in the periodontal pockets of dogs. The organism is a saccharolytic, fastidious, and is easily recognized by its strong catalase reaction with 15% H2O2, production of hydrogen sulfide, and growth stimulation by bile (oxgall) and pyruvate. Approximately 75% of strains are urease positive. When grown on pyruvate-containing media, > 85% of strains demonstrate beta-lactamase production. Ribosomal RNA-based phylogenetic studies show Bilophila to be a homogeneous species, most closely related to Desulfovibrio species. Both adherence to human cells and endotoxin have been observed, and preliminary work suggests that environmental iron has a role in expression of outer membrane proteins. Penicillin-binding proteins appear to mediate the organism's susceptibility to at least some beta-lactam agents, which induce spheroplast formation that results in a haze of growth on agar dilution susceptibility test plates which is difficult to interpret. Bilophilastrains are inhibited in vitro by most antibiotics.
Collapse
Affiliation(s)
- E J Baron
- Department of Medicine, University of California, Los Angeles, Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, U.S.A
| |
Collapse
|
29
|
Giamarellou H, Kanellakopoulou K. Bacteriologic and therapeutic considerations in intra-abdominal surgical infections. Anaerobe 2007; 3:207-12. [PMID: 16887592 DOI: 10.1006/anae.1997.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1996] [Accepted: 05/23/1997] [Indexed: 11/22/2022]
Abstract
The most important factor in the treatment of intra-abdominal infections are early diagnosis and prompt surgical intervention while antibiotics play a secondary role. The goals of surgical procedures should be to stop peritoneal contamination, to debride necrotic tissue, to remove debris and foreign bodies and to drain any pus collection. Antibiotics should be initiated before surgery and they must encompass both colonic aerobes and anaerobes including Bacteroides fragilis group but not necessary Enterococcus sp. Antibacterial agents with pure activity against anaerobes include chloramphenicol, clindamycin and the nitroimidazoles while ampicillin/sulbactam, amoxicillin/clavulanate, ticarcillin/clavulanate, cefoxitin, cefotetan, ceftizoxime imipenem/cilastatin, meropenem and some advanced quinolones like sparfloxacin, represent a single drug to cover both aerobic and anaerobic microflora. Although almost all clinical trials usually result in a 90% efficacy rate, the final outcome is dependant on the stage of the infection (early versus late), sepsis score, underlying diseases and the applied surgical procedures. On the other hand the choice of antibiotic(s) must be influenced by its toxicity, profiles local nosocomial susceptibility patterns, resistance inducing ability and price.
Collapse
Affiliation(s)
- H Giamarellou
- Athens University School of Medicine, 1st Dept Propedeutic Medicine, Laiko, General Hospital, Athens, Greece
| | | |
Collapse
|
30
|
Hecht DW. Anaerobes: Antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 2006; 12:115-21. [PMID: 16765857 DOI: 10.1016/j.anaerobe.2005.10.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Affiliation(s)
- David W Hecht
- Hines VA Hospital, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
31
|
Urbán E, Hortobágyi A, Szentpáli K, Nagy E. Two intriguing Bilophila wadsworthia cases from Hungary. J Med Microbiol 2004; 53:1167-1169. [PMID: 15496398 DOI: 10.1099/jmm.0.45678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bilophila wadsworthia, an obligately anaerobic Gram-negative bacillus, was first isolated from appendicitis specimens and human faeces. The two cases described here are the first report of the isolation of B. wadsworthia in Hungary, and include the first isolation from chronic mastoiditis complicated with a brain abscess.
Collapse
Affiliation(s)
- Edit Urbán
- Institute of Clinical Microbiology1, Department of Anaesthesiology and Intensive Therapy2 and Department of Surgery3, Faculty of Medicine, University of Szeged, Szeged H-6701, Hungary
| | - Anna Hortobágyi
- Institute of Clinical Microbiology1, Department of Anaesthesiology and Intensive Therapy2 and Department of Surgery3, Faculty of Medicine, University of Szeged, Szeged H-6701, Hungary
| | - Károly Szentpáli
- Institute of Clinical Microbiology1, Department of Anaesthesiology and Intensive Therapy2 and Department of Surgery3, Faculty of Medicine, University of Szeged, Szeged H-6701, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology1, Department of Anaesthesiology and Intensive Therapy2 and Department of Surgery3, Faculty of Medicine, University of Szeged, Szeged H-6701, Hungary
| |
Collapse
|
32
|
Infections due to anaerobic bacteria and the role of antimicrobial susceptibility testing of anaerobes. ACTA ACUST UNITED AC 2001. [DOI: 10.1097/00013542-200101000-00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Rautio M, Saxén H, Siitonen A, Nikku R, Jousimies-Somer H. Bacteriology of histopathologically defined appendicitis in children. Pediatr Infect Dis J 2000; 19:1078-83. [PMID: 11099090 DOI: 10.1097/00006454-200011000-00010] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute appendicitis is the most common surgical emergency in childhood. However, the pathogenesis and detailed microbiology are obscure. OBJECTIVE To determine in detail the bacterial etiology of appendicitis in children in relation to the histologic tissue pathology. STUDY DESIGN Tissue samples obtained at surgery from 41 children with suspected acute appendicitis were examined histologically and by culture for aerobic and anaerobic bacteria. The patients were analyzed according to histopathologic and clinical findings. RESULTS Aerobic and anaerobic species were isolated from 40 of 41 (98%) samples; on average, 14.1 isolates per specimen (10.4 anaerobes and 3.7 aerobes). Specimens from patients with gangrenous appendices yielded significantly higher numbers of anaerobic isolates per specimen than did specimens from patients with healthy appendices (11.7 vs. 7.7; P < 0.01). Bacteria belonging to the Bacteroides fragilis group were the most frequently isolated anaerobic microorganisms (95%). Other organisms frequently isolated in all histology groups were Peptostreptococcus micros (66%), Bilophila wadsworthia (63%), Fusobacterium nucleatum (44%), Eggerthella lenta (44%) and a hitherto undescribed bile-resistant, pigment-producing Gram-negative rod (41%). Of the aerobes Escherichia coli (88%) and Streptococcus anginosus group (former Streptococcus "milleri" group) organisms (61%) were the most frequent findings. CONCLUSIONS The shift from histologically normal toward gangrenous appendices was clearly associated with markedly elevated anaerobic bacterial counts in terms of species. The unusually high frequencies of B. wadsworthia (75%) and the hitherto undescribed bile-resistant, pigment-producing Gram-negative rod (56%) in gangrenous appendices represent unique and different findings from those reported in adults.
Collapse
Affiliation(s)
- M Rautio
- Anaerobe Reference Laboratory, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
34
|
Galán JC, Reig M, Navas A, Baquero F, Blázquez J. ACI-1 from Acidaminococcus fermentans: characterization of the first beta-lactamase in Anaerobic cocci. Antimicrob Agents Chemother 2000; 44:3144-9. [PMID: 11036038 PMCID: PMC101618 DOI: 10.1128/aac.44.11.3144-3149.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acidaminococcus fermentans belongs to the group of strictly anaerobic gram-negative cocci. All previously described Acidaminococcus strains are susceptible to beta-lactam antibiotics. An A. fermentans strain (RYC-MR95) resistant to penicillin and expanded-spectrum cephalosporin (amoxicillin and cefotaxime MICs, 64 microgram/ml) was isolated from a human perianal abscess. A fragment encoding a beta-lactamase from genomic DNA was cloned in Escherichia coli K-12 strain HB101, and the recombinant strain expressed resistance to amoxicillin (MIC, 1,024 microgram/ml) and cefotaxime (MIC, 4 microgram/ml). Clavulanic acid decreased the MICs to 8 and 0.03 microgram/ml, respectively. Analysis of the nucleotide sequence revealed a new class A beta-lactamase, ACI-1. In accordance with its biochemical properties, we propose to assign ACI-1 to functional group 2be. The ACI-1 enzyme (estimated pI 4.3) had <50% amino acid identity with any other class A beta-lactamases, the closest being ROB-1 from Haemophilus influenzae (44%). ACI-1 was closer to class A beta-lactamases from some gram-positive organisms (41 to 44% amino acid identity with Bacillus beta-lactamases) than to most class A enzymes from gram-negative organisms (TEM-1, 24.6%). The aci1 gene had a G+C content of 42.1%, in contrast with 56% G+C content for genomic DNA from A. fermentans, thus suggesting that aci1 may have been obtained by horizontal gene transfer.
Collapse
Affiliation(s)
- J C Galán
- Servicio de Microbiología, Hospital Ramón y Cajal, Instituto Nacional de Salud (INSALUD), 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Taurine-reduction Powers Rapid Growth of Bilophila wadsworthia: A Liquid Minimal-salts Medium for Clinical Research? Anaerobe 1999. [DOI: 10.1006/anae.1999.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Abstract
Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this topic are available, though the sequences of some of the appropriate genes are known. Desulfonative enzymes in aerobic bacteria are generally regulated by induction, if the sulfonate is serving as a carbon and energy source, or by a global network for sulfur scavenging (sulfate-starvation-induced (SSI) stimulon) if the sulfonate is serving as a source of sulfur. It is unclear whether an SSI regulation is found in anaerobes. The anaerobic bacteria examined can express the degradative enzymes constitutively, if the sulfonate is being utilized as a carbon source, but enzyme induction has also been observed. At least three general mechanisms of desulfonation are recognisable or postulated in the aerobic catabolism of sulfonates: (1) activate the carbon neighboring the C-SO3- bond and release of sulfite assisted by a thiamine pyrophosphate cofactor; (2) destabilize the C-SO3- bond by addition of an oxygen atom to the same carbon, usually directly by oxygenation, and loss of the good leaving group, sulfite; (3) an unidentified, formally reductive reaction. Under SSIS control, different variants of mechanism (2) can be seen. Catabolism of sulfonates by anaerobes was discovered recently, and the degradation of taurine involves mechanism (1). When anaerobes assimilate sulfonate sulfur, there is one common, unknown mechanism to desulfonate the inert aromatic compounds and another to desulfonate inert aliphatic compounds; taurine seems to be desulfonated by mechanism (1).
Collapse
Affiliation(s)
- A M Cook
- Fakultät für Biologie der Universität, Konstanz, Germany.
| | | | | |
Collapse
|
38
|
Mochida C, Hirakata Y, Matsuda J, Iori F, Ozaki Y, Nakano M, Hamaguchi K, Izumikawa K, Yamaguchi T, Tomono K, Maesaki S, Yamada Y, Kohno S, Kamihira S. Antimicrobial susceptibility testing of Bilophila wadsworthia isolates submitted for routine laboratory examination. J Clin Microbiol 1998; 36:1790-2. [PMID: 9620424 PMCID: PMC104924 DOI: 10.1128/jcm.36.6.1790-1792.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MICs of antibiotics against Bilophila wadsworthia isolates were measured by agar and broth microdilution with pyruvic acid and by Etest. The inoculum size influenced greatly agar dilution. Despite discrepancies in MICs depending on the measurement method used, clindamycin consistently showed potent activity. Broth microdilution and Etest appear to be candidates for laboratory susceptibility testing.
Collapse
Affiliation(s)
- C Mochida
- Department of Laboratory Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schumacher UK, Single B. Susceptibility of the anaerobic gram-negative non-sporulating rod, Bilophila wadsworthia to beta-lactams, beta-lactamase inhibitors, meropenem, metronidazole, clindamycin and quinolones. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1998; 287:421-5. [PMID: 9638871 DOI: 10.1016/s0934-8840(98)80179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The susceptibility of eighty-seven strain of Bilophila wadsworthia to five beta-lactams, two beta-lactamase inhibitors, meropenem, metronidazole, clindamycin and two quinolones was determined. Tests were performed by the modified reference agar dilution technique using triphenyltetrazolium chloride for endpoint reading. The test strains showed a reduced susceptibility to the beta-lactams, penicillin G (MIC90 4 micrograms/ml), ampicillin (MIC90 32 micrograms/ml), piperacillin (MIC90 64 micrograms/ml), cephalothin (MIC90 2 micrograms/ml and cefotaxim (MIC90 4 micrograms/ml). The activity of ampicillin was increased by addition of the beta-lactamase inhibitor, sulbactam (MIC90 2 micrograms/ml), as was the activity of piperacillin by the addition of tazobactam (MIC90 4 micrograms/ml) 90.8% of the strains were found to produce beta-lactamase by the nitrocefin tube method. All strains were shown to be highly susceptible to meropenem, metronidazole and clindamycin (MICs < or = 1 microgram/ml). Sparfloxacin (MIC90 1 microgram/ml) and ciprofloxacin (MIC90 0.5 microgram/ml) were found to be active against most of the strains tested.
Collapse
Affiliation(s)
- U K Schumacher
- Abteilung für Medizinische Mikrobiologie, Eberhard-Karls-Universität Tübingen
| | | |
Collapse
|
40
|
Aucher P, Richard L, Grollier G, Moinard N, Mioche L, Babin P, Fauchere J. Isolement de Bilophila wadsworthia au cours d'une pancréatite aiguë. Med Mal Infect 1998. [DOI: 10.1016/s0399-077x(98)80117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Marina M, Ivanova K, Ficheva M, Fichev G. Bilophila wadsworthiain Brain Abscess: Case Report. Anaerobe 1997; 3:107-9. [PMID: 16887572 DOI: 10.1006/anae.1997.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1996] [Accepted: 03/27/1997] [Indexed: 11/22/2022]
Abstract
A case of a patient with a 20-year history of chronic otitis media complicated by cholesteatoma and brain abscess is described. A CT scan with contrast material showed three abscess cavities in the right cerebellar hemisphere. A culture from a specimen of the cholesteatoma yielded a significant amount of growth of Bilophila wadsworthia, Bacteroides fragilis and Prevotella oris and a moderate growth of alpha-streptococci and Staphylococcus simulans. From the pus of the brain abscess we also isolated numerous Bilophila wadsworthia, Bacteroides fragilis and Prevotella oris and some Prevotella buccae and Peptostreptococcus anaerobius. No aerobes were present. The patient underwent a craniotomy and the biggest abscess was removed together with the capsule. The antimicrobial therapy included penicillin plus metronidazole and later augmentin. The result of the treatment was a complete cure and total recovery of the patient. This is the first documentation of isolation of B. wadsworthia in chronic otitis media and in brain abscess.
Collapse
Affiliation(s)
- M Marina
- Anaerobic Laboratory, National Center of Infectious and Parasitic Diseases, Department of Microbiology, Sofia, Bulgaria
| | | | | | | |
Collapse
|
42
|
Schumacher UK. Comparison of the Etest and a microbroth dilution system (Sceptor) to a reference agar dilution method for susceptibility testing of Bilophila wadsworthia. Clin Microbiol Infect 1997; 3:246-249. [PMID: 11864112 DOI: 10.1111/j.1469-0691.1997.tb00605.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE: To compare the Etest and a microbroth dilution system (Sceptor) to a reference agar dilution method for susceptibility testing of Bilophila wadsworthia. METHODS: The susceptibility of 15 clinical isolates of Bilophila wadsworthia was determined by the National Committee for Clinical Laboratory Standards (NCCLS) agar dilution method using triphenyltetrazolium chloride for endpoint determination. The results were compared with the results obtained by the E test and a commercial microbroth dilution system (Sceptor). RESULTS: Comparison of the MICs obtained by the reference method and the Etest revealed few discrepancies, with piperacillin and metronidazole being the only exceptions. The overall agreement was 70% within one dilution step. The discrepancies did not result in major interpretative errors. The overall essential agreement using susceptibility categories was 98% for the E test and 99% for the microdilution system. CONCLUSIONS: Both methods may be considered as acceptable alternatives for testing individual isolates of B. wadsworthia.
Collapse
Affiliation(s)
- Ulrike K. Schumacher
- Department of Medical Microbiology, Institute of Hygiene, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Schumacher UK, Eiring P, Häcker FM. Incidence of Bilophila wadsworthia in appendiceal, peritoneal and fecal samples from children. Clin Microbiol Infect 1997; 3:134-136. [PMID: 11864089 DOI: 10.1111/j.1469-0691.1997.tb00264.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrike K. Schumacher
- Department of Medical Microbiology, Hygiene-Institute, University of Tubingen, Silcherstrasse 7, 72076 Tübingen, Germany
| | | | | |
Collapse
|
44
|
Molecular Detection and Identification of Anaerobic Bacteria. J Infect Chemother 1997. [DOI: 10.1007/bf02489178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Mosca A, D'Alagni M, Del Prete R, De Michele GP, Summanen PH, Finegold SM, Miragliotta G. Preliminary evidence of endotoxic activity of Bilophila wadsworthia. Anaerobe 1995; 1:21-4. [PMID: 16887503 DOI: 10.1016/s1075-9964(95)80379-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/1994] [Indexed: 11/21/2022]
Abstract
In this study we describe two properties of the Gram-negative bacterium Bilophila wadsworthia, namely the ability to clot Limulus lysate and the capacity to induce the production of tissue factor-like procoagulant activity by human mononuclear cells in vitro. Although exhibited at a lower degree when compared with those of typical Gram-negative bacteria or Gram-negative endotoxin those activities may account in part for Bilophila's pathogenicity. The capacity indeed to induce fibrin formation through the interaction with mononuclear cells suggests one mechanism by which the microorganism might cause abscess formation in the host. Moreover, since this activity is dependent on the number of Bilophila interacting with mononuclear cells, we hypothesize that this biological activity is closely influenced by growth environment.
Collapse
Affiliation(s)
- A Mosca
- Istituto di Microbiologia, Università di Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Sapico FL, Reeves D, Wexler HM, Duncan J, Wilson KH, Finegold SM. Preliminary study using species-specific oligonucleotide probe for rRNA of Bilophila wadsworthia. J Clin Microbiol 1994; 32:2510-3. [PMID: 7529241 PMCID: PMC264093 DOI: 10.1128/jcm.32.10.2510-2513.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Portions of the 16S RNA from a urease-positive Bilophila wadsworthia strain were sequenced, and a probe was constructed. The probe was end labeled with [32P]ATP and polynucleotide kinase and hybridized on a nylon filter (by dot blot hybridization) to the immobilized rRNA of 12 B. wadsworthia strains and eight other anaerobic isolates. The probe efficiently hybridized only to the Bilophila strains. Cross-reactivity at high RNA levels (2,000 ng) was observed with one strain of Bacteroides thetaiotamicron and one strain of Bacteroides fragilis (with 10x SET buffer [20x SET buffer is 0.5 M NaCl, 0.03 M Tris, and 2 mM EDTA]) but was not seen at lower RNA levels or with 5x SET buffer. When tested against mixed cultures of aerobic and anaerobic isolates representative of appendiceal abscess flora, the probe did not react with mixed cultures containing no Bilophila cells and could detect > or = 10(5) Bilophila CFU/ml when the mixture was seeded with Bilophila cells. This probe is of potential use in the rapid identification of pure isolates and in the direct identification of B. wadsworthia in clinical specimens.
Collapse
Affiliation(s)
- F L Sapico
- Medical and Research Services, Wadsworth Division, Veterans Administration Medical Center, West Los Angeles, California 90073
| | | | | | | | | | | |
Collapse
|