1
|
Yu YH, Chen C, Ma JR, Zhang YY, Yan MF, Zhang WB, Hu Z, Wang HH, Ma JC. The FabA-FabB Pathway Is Not Essential for Unsaturated Fatty Acid Synthesis but Modulates Diffusible Signal Factor Synthesis in Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:119-130. [PMID: 36515967 DOI: 10.1094/mpmi-09-22-0182-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most bacteria use type II fatty acid synthesis (FAS) systems for synthesizing fatty acids, of which the conserved FabA-FabB pathway is considered to be crucial for unsaturated fatty acid (UFA) synthesis in gram-negative bacteria. Xanthomonas campestris pv. campestris, the phytopathogen of black rot disease in crucifers, produces higher quantities of UFAs under low-temperature conditions for increasing membrane fluidity. The fabA and fabB genes were identified in the X. campestris pv. campestris genome by BLAST analysis; however, the growth of the X. campestris pv. campestris fabA and fabB deletion mutants was comparable to that of the wild-type strain in nutrient and minimal media. The X. campestris pv. campestris ΔfabA and ΔfabB strains produced large quantities of UFAs and, altogether, these results indicated that the FabA-FabB pathway is not essential for growth or UFA synthesis in X. campestris pv. campestris. We also observed that the expression of X. campestris pv. campestris fabA and fabB restored the growth of the temperature-sensitive Escherichia coli fabA and fabB mutants CL104 and CY242, respectively, under non-permissive conditions. The in-vitro assays demonstrated that the FabA and FabB proteins of X. campestris pv. campestris catalyzed FAS. Our study also demonstrated that the production of diffusible signal factor family signals that mediate quorum sensing was higher in the X. campestris pv. campestris ΔfabA and ΔfabB strains and greatly reduced in the complementary strains, which exhibited reduced swimming motility and attenuated host-plant pathogenicity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jian-Rong Ma
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
| | - Yuan-Yin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ming-Feng Yan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
2
|
Wei Y, Zhan L, Gao Z, Privé GG, Dong Y. Crystal structure of GnsA from Escherichia coli. Biochem Biophys Res Commun 2015; 462:1-7. [PMID: 25839658 DOI: 10.1016/j.bbrc.2015.03.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Escherichia Coli GnsA is a regulator of phosphatidylethanolamine synthesis and functions as a suppressor of both a secG null mutation and fabA6 mutations. GnsA may also be a toxin with the cognate antitoxin YmcE. Here we report the crystal structure of GnsA to 1.8 Å. GnsA forms a V shaped hairpin structure that is tightly associated into a homodimer. Our comprehensive structural study suggests that GnsA is structurally similar to an outer membrane protein, suggesting a function of protein binding.
Collapse
Affiliation(s)
- Yong Wei
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Lihong Zhan
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Beld J, Blatti JL, Behnke C, Mendez M, Burkart MD. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions. JOURNAL OF APPLIED PHYCOLOGY 2014; 26:1619-1629. [PMID: 25110394 PMCID: PMC4125210 DOI: 10.1007/s10811-013-0203-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.
Collapse
|
4
|
Boehm R, Sommer S, Severin K, Li SM, Heide L. Active expression of the ubiA gene from E. coli in tobacco: influence of plant ER-specific signal peptides on the expression of a membrane-bound prenyltransferase in plant cells. Transgenic Res 2000; 9:477-86. [PMID: 11206977 DOI: 10.1023/a:1026507803067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ubiA gene from E. coli codes for 4-hydroxybenzoate: polyprenyldiphosphate 3-polyprenyltransferase, an integral membrane protein involved in ubiquinone biosynthesis. This prokaryotic membrane protein was stably expressed in tobacco using Agrobacterium tumefaciens-mediated transformation. Transgenic lines containing a direct fusion of the ubiA structural gene to a 35S-derived promoter gave very low enzyme activity levels (average 0.16 pkat/mg). Inclusion of an N-terminal ER-specific signal peptide from a lectin gene from Phaseolus vulgaris resulted in an average activity of 1.08 pkat/mg in the transgenic tobacco lines. The additional inclusion of a C-terminal HDEL tetrapeptide, responsible for the retention of proteins in the endoplasmic reticulum of eukaryotic cells, increased the activity to 18.6 pkat/mg. When the promotor of this construct was changed from the 35S derivative to the recently described very strong plant promoter (ocs)3mas, the activity increased further to 128.6 pkat/mg. The most active tobacco line showed activities of the introduced enzyme which exceeded those of wild-type E. coli (the source of ubiA) by a factor of 1100. These results demonstrate the efficacy of plant ER-specific signal peptides for the active expression of a prokaryotic membrane protein in plants.
Collapse
Affiliation(s)
- R Boehm
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
5
|
Nakahara T, Zhang QM, Hashiguchi K, Yonei S. Identification of proteins of Escherichia coli and Saccharomyces cerevisiae that specifically bind to C/C mismatches in DNA. Nucleic Acids Res 2000; 28:2551-6. [PMID: 10871405 PMCID: PMC102710 DOI: 10.1093/nar/28.13.2551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pathways leading to G:C-->C:G transversions and their repair mechanisms remain uncertain. C/C and G/G mismatches arising during DNA replication are a potential source of G:C-->C:G transversions. The Escherichia coli mutHLS mismatch repair pathway efficiently corrects G/G mismatches, whereas C/C mismatches are a poor substrate. Escherichia coli must have a more specific repair pathway to correct C/C mismatches. In this study, we performed gel-shift assays to identify C/C mismatch-binding proteins in cell extracts of E. COLI: By testing heteroduplex DNA (34mers) containing C/C mismatches, two specific band shifts were generated in the gels. The band shifts were due to mismatch-specific binding of proteins present in the extracts. Cell extracts of a mutant strain defective in MutM protein did not produce a low-mobility complex. Purified MutM protein bound efficiently to the C/C mismatch-containing heteroduplex to produce the low-mobility complex. The second protein, which produced a high-mobility complex with the C/C mismatches, was purified to homogeneity, and the amino acid sequence revealed that this protein was the FabA protein of E.COLI: The high-mobility complex was not formed in cell extracts of a fabA mutant. From these results it is possible that MutM and FabA proteins are components of repair pathways for C/C mismatches in E.COLI: Furthermore, we found that Saccharomyces cerevisiae OGG1 protein, a functional homolog of E.COLI: MutM protein, could specifically bind to the C/C mismatches in DNA.
Collapse
Affiliation(s)
- T Nakahara
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Japan
| | | | | | | |
Collapse
|