1
|
Nigg M, de Oliveira TC, Sarmiento-Villamil JL, de la Bastide PY, Hintz WE, Sherif SM, Shukla M, Bernier L, Saxena PK. Comparative Analysis of Transcriptomes of Ophiostoma novo-ulmi ssp. americana Colonizing Resistant or Sensitive Genotypes of American Elm. J Fungi (Basel) 2022; 8:637. [PMID: 35736120 PMCID: PMC9224576 DOI: 10.3390/jof8060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.
Collapse
Affiliation(s)
- Martha Nigg
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Thais C. de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Jorge L. Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Paul Y. de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Will E. Hintz
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
2
|
Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse USR. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. THE NEW PHYTOLOGIST 2010; 185:577-88. [PMID: 19878462 DOI: 10.1111/j.1469-8137.2009.03066.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Summary *Despite recent advances in elucidation of natural products in root exudates, there are significant gaps in our understanding of the ecological significance of products in the rhizosphere. *Here, we investigated the potential of barley (Hordeum vulgare) to secrete defense root exudates when challenged by the soilborne pathogen Fusarium graminearum. *Liquid chromatography with photodiode array detection (LC-DAD) was used to profile induced small-molecular-weight exudates. Thus, t-cinnamic, p-coumaric, ferulic, syringic and vanillic acids were assigned to plant metabolism and were induced within 2 d after Fusarium inoculation. Biological tests demonstrated the ability of those induced root exudates to inhibit the germination of F. graminearum macroconidia. In vivo labeling experiments with (13)CO(2) revealed that the secreted t-cinnamic acid was synthesized de novo within 2 d of fungal infection. Simultaneously to its root exudation, t-cinnamic acid was accumulated in the roots. Microscopic analysis showed that nonlignin cell wall phenolics were induced not only in necrosed zones but in all root tissues. *Results suggest that barley plants under attack respond by de novo biosynthesis and secretion of compounds with antimicrobial functions that may mediate natural disease resistance.
Collapse
Affiliation(s)
- Arnaud Lanoue
- ICG-3 Phytosphere, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Bowden CG, Hintz WE, Jeng R, Hubbes M, Horgen PA. Isolation and characterization of the cerato-ulmin toxin gene of the Dutch elm disease pathogen, Ophiostoma ulmi. Curr Genet 1994; 25:323-9. [PMID: 8082175 DOI: 10.1007/bf00351485] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hydrophobic protein cerato-ulmin (CU), produced by Ophiostoma ulmi, has been implicated in the pathogenicity of this fungus on elm. Primers were designed based on the nucleotide sequence deduced from the published CU amino-acid sequence, and a DNA fragment of the cu gene was amplified using the polymerase chain reaction. The amplified cu fragment was used as a hybridization probe to identify and isolate the cu gene from a genomic DNA library of an aggressive isolate of O. ulmi ( = O. novo-ulmi). The cu coding region is interrupted by two introns and encodes a 100 amino-acid prepro-CU polypeptide that is processed to a 75 amino-acid mature protein upon secretion. CU shows significant sequence similarity to hydrophobins secreted by certain other fungi.
Collapse
Affiliation(s)
- C G Bowden
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | |
Collapse
|