1
|
Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-Renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
2
|
Li J, Yue Y, Wang Z, Zhou Q, Fan L, Chai Z, Song C, Dong H, Yan S, Gao X, Xu Q, Yao J, Wang Z, Wang X, Hou P, Huang L. Illumination/Darkness-Induced Changes in Leaf Surface Potential Linked With Kinetics of Ion Fluxes. FRONTIERS IN PLANT SCIENCE 2019; 10:1407. [PMID: 31787996 PMCID: PMC6854870 DOI: 10.3389/fpls.2019.01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
A highly reproducible plant electrical signal-light-induced bioelectrogenesis (LIB) was obtained by means of periodic illumination/darkness stimulation of broad bean (Vicia faba L.) leaves. By stimulating the same position of the same leaf with different concentrations of NaCl, we observed that the amplitude and waveform of the LIB was correlated with the intensity of stimulation. This method allowed us to link dynamic ion fluxes induced by periodic illumination/darkness to salt stress. The self-referencing ion electrode technique was used to explore the ionic mechanisms of the LIB. Fluxes of H+, Ca2+, K+, and Cl- showed periodic changes under periodic illumination/darkness before and after 50 mM NaCl stimulation. Gray relational analysis was used to analyze correlations between each of these ions and LIB. The results showed that different ions are involved in surface potential changes at different stages under periodic illumination/darkness. The gray relational grade reflected the contribution of each ion to the change in surface potential at a certain time period. The ion fluxes data obtained under periodic illumination/darkness stimulation will contribute to the future development of a dynamic model for interpretation of electrophysiological events in plant cells.
Collapse
Affiliation(s)
- Jinhai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Yang Yue
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Ziyang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Lifeng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Zhiqiang Chai
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Chao Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shixian Yan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinyu Gao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Qiang Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Jiepeng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Zhongyi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
3
|
Awan H, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication and Information Theory of Single Action Potential Signals in Plants. IEEE Trans Nanobioscience 2018; 18:61-73. [PMID: 30442613 DOI: 10.1109/tnb.2018.2880924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many plants, such as Mimosa pudica (the "sensitive plant"), employ electrochemical signals known as action potentials (APs) for rapid intercellular communication. In this paper, we consider a reaction-diffusion model of individual AP signals to analyze APs from a communication- and information-theoretic perspective. We use concepts from molecular communication to explain the underlying process of information transfer in a plant for a single AP pulse that is shared with one or more receiver cells. We also use the chemical Langevin equation to accommodate the deterministic as well as stochastic component of the system. Finally, we present an information-theoretic analysis of single action potentials, obtaining achievable information rates for these signals. We show that, in general, the presence of an AP signal can increase the mutual information and information propagation speed among neighboring cells with receivers in different settings.
Collapse
|
4
|
Mathematical Models of Electrical Activity in Plants. J Membr Biol 2017; 250:407-423. [PMID: 28711950 DOI: 10.1007/s00232-017-9969-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin-Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.
Collapse
|
5
|
Novikova EM, Vodeneev VA, Sukhov VS. Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817010068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci 2016; 17:ijms17091558. [PMID: 27649160 PMCID: PMC5037829 DOI: 10.3390/ijms17091558] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Hyongsuk Kim
- Department of Electronics Engineering, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
7
|
van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB. Spread the news: systemic dissemination and local impact of Ca²⁺ signals along the phloem pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1761-87. [PMID: 24482370 DOI: 10.1093/jxb/ert425] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Sukhov V, Akinchits E, Katicheva L, Vodeneev V. Simulation of variation potential in higher plant cells. J Membr Biol 2013; 246:287-96. [PMID: 23417063 DOI: 10.1007/s00232-013-9529-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022]
Abstract
Variation potential (VP), a propagating electrical signal unique to plants, induces a number of changes in many physiological processes. However, the mechanisms of its generation and propagation are still under discussion and require experimental and theoretical analysis, including VP simulations. The mathematical model for VP formation in plants has been worked out and is based on our previous description of electrophysiological processes in higher plant cells, including plasma membrane ion transport systems (K(+), Cl(-) and Ca(2+) channels, H(+) and Ca(2+)-ATPase, 2H(+)/Cl(-) symporter and H(+)/K(+) antiporter) and their regulation, ion concentration changes in cells and extracellular spaces and buffers in cytoplasm and apoplast. In addition, the VP model takes into account wound substance diffusion, which is described by a one-dimensional diffusion equation, and ligand-gated Ca(2+) channels, which are activated by this substance. The VP model simulates the experimental dependence of amplitude, velocity and shape of VP on the distance from the wounding site and describes the influence of metabolic inhibitors, divalent cation chelators and anion channel blockers on the generation of this electrical reaction, as shown in experiments. Thus, our model favorably simulates VP in plants and theoretically supports the role of wound substance diffusion and Ca(2+) influx in VP development.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, State University of Nizhni Novgorod, Nizhny Novgorod, Russia.
| | | | | | | |
Collapse
|
9
|
Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Simulation of action potential propagation in plants. J Theor Biol 2011; 291:47-55. [PMID: 21959317 DOI: 10.1016/j.jtbi.2011.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 11/21/2022]
Abstract
Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity.
Collapse
|
11
|
Marten I, Deeken R, Hedrich R, Roelfsema MRG. Light-induced modification of plant plasma membrane ion transport. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:64-79. [PMID: 20712622 DOI: 10.1111/j.1438-8677.2010.00384.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.
Collapse
Affiliation(s)
- I Marten
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences Biocenter, Würzburg University, Würzburg, Germany
| | | | | | | |
Collapse
|
12
|
Sukhov V, Vodeneev V. A mathematical model of action potential in cells of vascular plants. J Membr Biol 2009; 232:59-67. [PMID: 19921324 DOI: 10.1007/s00232-009-9218-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022]
Abstract
A mathematical model of action potential (AP) in vascular plants cells has been worked out. The model takes into account actions of plasmalemma ion transport systems (K(+), Cl(-) and Ca(2+) channels; H(+)- and Ca(2+)-ATPases; 2H(+)/Cl(-) symporter; and H(+)/K(+) antiporter), changes of ion concentrations in the cell and in the extracellular space, cytoplasmic and apoplastic buffer capacities and the temperature dependence of active transport systems. The model of AP simulates a stationary level of the membrane potential and ion concentrations, generation of AP induced by electrical stimulation and gradual cooling and the impact of external Ca(2+) for AP development. The model supports a hypothesis about participation of H(+)-ATPase in AP generation.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod 603950, Russia.
| | | |
Collapse
|
13
|
Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T. Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 2000; 78:1255-69. [PMID: 10692314 PMCID: PMC1300727 DOI: 10.1016/s0006-3495(00)76682-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The guard cell K(+) channel KAT1, cloned from Arabidopsis thaliana, is activated by hyperpolarization and regulated by a variety of physiological factors. Low internal pH accelerated the activation kinetics of the KAT1 channel expressed in Xenopus oocytes with a pK of approximately 6, similar to guard cells in vivo. Mutations of histidine-118 located in the putative cytoplasmic linker between the S2 and S3 segments profoundly affected the gating behavior and pH dependence. At pH 7.2, substitution with a negatively charged amino acid (glutamate, aspartate) specifically slowed the activation time course, whereas that with a positively charged amino acid (lysine, arginine) accelerated. These mutations did not alter the channel's deactivation time course or the gating behavior after the first opening. Introducing an uncharged amino acid (alanine, asparagine) at position 118 did not have any obvious effect on the activation kinetics at pH 7.2. The charged substitutions markedly decreased the sensitivity of the KAT1 channel to internal pH in the physiological range. We propose a linear kinetic scheme to account for the KAT1 activation time course at the voltages where the opening transitions dominate. Changes in one forward rate constant in the model adequately account for the effects of the mutations at position 118 in the S2-S3 linker segment. These results provide a molecular and biophysical basis for the diversity in the activation kinetics of inward rectifiers among different plant species.
Collapse
Affiliation(s)
- X D Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ion flux relations in the unicellular marine alga Acetabularia have been investigated by uptake and washout kinetics of radioactive tracers (22Na+, 42K+, 36Cl- and 86Rb+) in normal cells and in cell segments with altered compartmentation (depleted of vacuole or of cytoplasm). Some flux experiments were supplemented by simultaneous electrophysiological recordings. The main results and conclusions about the steady-state relations are: the plasmalemma is the dominating barrier for translocation of K+ with influx and efflux of about 100 nmol.m-2.sec-1. K+ passes three- to sevenfold more easily than Rb+ does. Under normal conditions, Cl- (the substrate of the electrogenic pump, which dominates the electrical properties of the plasmalemma in the resting state) shows two efflux components of about 17 and 2 mumol.m-2.sec-1, and a cytoplasmic as well as vacuolar [Cl-] of about 420 mM ([Cl-]o = 529 mM). At 4 degrees C, when the pump is inhibited, both influx and efflux, as well as the cellular [Cl-], are significantly reduced. Na+ ([Na+]i: about 70 mM, [Na+]o: 461 mM), which is of minor electrophysiological relevance compared to K+, exhibits rapid and virtually temperature-insensitive (electroneutral) exchange (two components with about 2 and 0.2 mumol.m-2.sec-1 for influx and efflux). Some results with Na+ and Cl- are inconsistent with conventional (noncyclic) compartmentation models: (i) equilibration of the vacuole (with the external medium) can be faster than equilibration of the cytoplasm, (ii) absurd concentration values result when calculated by conventional compartmental analysis, and (iii) large amounts of ions can be released from the cell without changes in the electrical potential of the cytoplasm. These observations can be explained by the particular compartmentation of normal Acetabularia cells (as known by electron micrographs) with about 1 part cytoplasm, 5 parts central vacuole, and 5 parts vacuolar vesicles. These vesicles communicate directly with the central vacuole, with the cytoplasm and with the external medium.
Collapse
Affiliation(s)
- H Mummert
- Institut für Biologie I der Universität, Tübingen, Germany
| | | |
Collapse
|